KORK EX KEY KEY YOUR

An Enhanced Augmented Matched Interface and Boundary (AMIB) Method for Solving Elliptic and Parabolic Problems on Irregular 2D Domains

Benjamin Pentecost bp957721@wcupa.edu

Department of Mathematics West Chester University of Pennsylvania

EPaDel Fall 2024: Penn State Abington November 2, 2024

Þ

Þ

 $2Q$

Mathematical Models

▶ Poisson Eqn. (time-indept.):

$$
\Delta u + ku = f(\vec{x}), \qquad (1.1)
$$

▶ Boundary Condition:

$$
\alpha_{\Gamma} u + \beta_{\Gamma} \frac{\partial u}{\partial n} = \phi(\vec{x}), \qquad (1.2)
$$

$$
\frac{\partial u}{\partial t} = \beta \Delta u + g, \quad 0 \le t \le T, \quad (1.3)
$$

▶ Boundary Condition:

$$
\alpha_{\Gamma} u + \beta_{\Gamma} \frac{\partial u}{\partial n} = \psi(t, \vec{x}), \text{ on } \Gamma, \quad (1.4)
$$

$$
\blacktriangleright
$$
 Initial Condition:

$$
u(0, \vec{x}) = u_0(\vec{x}), \tag{1.5}
$$

メロト メタト メミト メミ

[Benjamin Pentecost Enhanced AMIB Method 2/15](#page-0-0)

[§](#page-1-0)[Introduction](#page-1-0) [§](#page-3-0)[AMIB Method](#page-3-0) [§](#page-8-0)[Numerical Results](#page-8-0) [§](#page-13-0)[Conclusion](#page-13-0)

 QQ

Applications

Figure: Poisson–Boltzmann eqn. for electrostatic potential distribution over a protein.

Figure: Pennes Bioheat eqn. for heat dissipation in Magnetic Fluid Hyperthermia (MFH).

K ロト K 御 ト K 君 ト K 君

Department of Mathematics West Chester University of Pennsylvania [Benjamin Pentecost Enhanced AMIB Method 3/15](#page-0-0)

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B$

 2990

Interface Points, Fictitious Points, and Vertical Points

Þ

 2990

Fictitious Value Representations at Fictitious Points

$$
\tilde{u}_{\text{FP}} = \sum_{(x_I, y_J) \in S_{\text{FP}}} \tilde{w}_{\text{I},J} u_{\text{I},J} + \sum_{\vec{x}_{\text{VP}_1} \in V_{\text{FP}}} \tilde{w}_{\text{VP}_1} \phi(\vec{x}_{\text{VP}_1}), \tag{2.1}
$$

イロト イ押ト イヨト イヨト

where S_{FP} is a set of chosen grid points and V_{FP} is a set of vertical points.

Department of Mathematics West Chester University of Pennsylvania [Benjamin Pentecost Enhanced AMIB Method 5/15](#page-0-0)

 \Rightarrow

 2990

Approximating the Laplacian at Each Interior Gridpoint

$$
\delta_{xx} u_{i,j} = \frac{1}{h^2} \left(-\frac{1}{12} u_{i-2,j} + \frac{4}{3} u_{i-1,j} - \frac{5}{2} u_{i,j} + \frac{4}{3} u_{i+1,j} - \frac{1}{12} u_{i+2,j} \right),
$$
\n(2.2)

at a grid point (x_i, y_j) .

Discretization and Interpolation

K ロ → K 御 → K 君 → K 君 → → 君 → の Q Q →

 \mathbb{B}^+ 2990

The Augmented System

$$
\left(\begin{array}{cc} A & B \\ C & I \end{array}\right)\left(\begin{array}{c} U \\ Q \end{array}\right) = \left(\begin{array}{c} F \\ \Phi \end{array}\right),\tag{2.5}
$$

Let N_1 = number of interior grid points, N_2 = number of interface points, we have:

Figure: Nonzero entries of B and C.

[§](#page-1-0)[Introduction](#page-1-0) [§](#page-3-0)[AMIB Method](#page-3-0) [§](#page-8-0)[Numerical Results](#page-8-0) [§](#page-13-0)[Conclusion](#page-13-0)

The "starfish" Interface (Poisson Eqn.)

Figure: Numerical solution of the "starfish" interface.

The "butterfly" Interface (Heat Eqn.)

Figure: Numerical solution of the "butterfly" interface.

メロメ メタメ メミメ メミメー $E = 990$

Table: Temporal convergence tests for solving the ImIBVP with the "butterfly"-shaped interface

The "aircraft" Interface (Heat Eqn.)

 \leftarrow \Box \rightarrow → 御 → → 君 → → 君 $\bar{\rm p}$ Þ つへへ [Benjamin Pentecost Enhanced AMIB Method 12/15](#page-0-0)

イロト イ御 トメミト メミト ニミー つんぴ

Table: Convergence tests for solving the ImIBVP with the "aircraft"-shaped interface of various scale factors

scale factor	no. of points		L^{∞}	L^2	BCG
k.	IΡ	FP			time (sec)
1.0	662	909	5.24E-09	3.78E-10	121
1.3	856	1198	3.41E-09	$2.48E-10$	122
1.6	1060	1479	$4.32E-09$	$3.16E-10$	141
1.9	1266	1765	3.43E-09	$2.20E-10$	131

イロト イ押ト イヨト イヨト

 QQ

Conclusion

Key characteristics of the developed AMIB method are:

- ▶ capable of solving problems over highly irregular domains
- ▶ capable of handling versatile boundary conditions
- ▶ unconditionally stable when solving time-dependent problems
- ▶ accelerated by the FFT for high efficiency
- ▶ fourth-order accuracy (in space)

References

- Li, C., Zhao, S., Pentecost, B., Ren, Y., & Guan, Z. (2024). A fourth-order Cartesian grid method with FFT acceleration for elliptic and parabolic problems on irregular domains and arbitrarily curved boundaries. Submitted for publication.
- Li, C., Ren, Y., Long, G., Boerman, E., & Zhao, S. (2023). A Fast Sine Transform Accelerated High-Order Finite Difference Method for Parabolic Problems over Irregular Domains. Journal of Scientific Computing, 95(2), 49-. https://doi.org/10.1007/s10915-023-02177-7
- Ren, Y., Feng, H., & Zhao, S. (2022). A FFT accelerated high order finite difference method for elliptic boundary value problems over irregular domains. Journal of Computational Physics, 448, 110762-. https://doi.org/10.1016/j.jcp.2021.110762

