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Mathematical Models

▶ Poisson Eqn. (time-indept.):

∆u+ ku = f(x⃗), (1.1)

▶ Boundary Condition:

αΓu+ βΓ
∂u

∂n
= ϕ(x⃗), (1.2)

▶ Heat Eqn. (time-dept.):

∂u

∂t
= β∆u+ g, 0 ≤ t ≤ T, (1.3)

▶ Boundary Condition:

αΓu+ βΓ
∂u

∂n
= ψ(t, x⃗), on Γ, (1.4)

▶ Initial Condition:

u(0, x⃗) = u0(x⃗), (1.5)
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Applications

Figure: Poisson–Boltzmann eqn. for
electrostatic potential distribution over a
protein.

Figure: Pennes Bioheat eqn. for
heat dissipation in Magnetic Fluid
Hyperthermia (MFH).
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Interface Points, Fictitious Points, and Vertical Points
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Fictitious Value Representations at Fictitious Points

ũFP =
∑

(xI ,yJ )∈SFP

w̌I,JuI,J +
∑

x⃗VPi
∈VFP

w̆VPiϕ(x⃗VPi), (2.1)

where SFP is a set of chosen grid points and VFP is a set of vertical
points.
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Approximating the Laplacian at Each Interior
Gridpoint

δxxui,j =
1

h2

(
− 1

12
ui−2,j +

4

3
ui−1,j −
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2
ui,j +

4

3
ui+1,j −

1

12
ui+2,j

)
,

(2.2)
at a grid point (xi, yj).
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Discretization and Interpolation
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The Augmented System(
A B
C I

)(
U
Q

)
=

(
F
Φ

)
, (2.5)

Let N1 = number of interior grid points, N2 = number of interface points, we
have:

• AN1×N1

• B5N2×N1

• CN1×5N2

• I5N2×5N2

• UN1×1

• Q5N2×1

Figure: Nonzero entries of B and C.
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The ”starfish” Interface (Poisson Eqn.)

Figure: Numerical solution of the ”starfish” interface.

[Nx, Ny ]
L∞ L2

BCG

error order error order iter no.
[65, 65] 1.91E-06 6.11E-07 37

[129, 129] 1.19E-07 4.00 4.55E-08 3.75 44
[257, 257] 5.01E-09 4.57 9.94E-10 5.52 47
[513, 513] 2.86E-10 4.13 5.63E-11 4.14 51
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The ”butterfly” Interface (Heat Eqn.)

Figure: Numerical solution of the ”butterfly” interface.

[Nx, Ny ]
L∞ L2

BCG

error order error order time (sec)
[65, 65] 1.15E-04 1.09E-05 28

[129, 129] 5.39E-07 7.74 1.24E-07 6.46 69
[257, 257] 5.50E-09 6.62 1.38E-09 6.48 293
[513, 513] 3.09E-10 4.15 1.02E-10 3.76 1351
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Table: Temporal convergence tests for solving the ImIBVP with the
”butterfly”-shaped interface

Nt
L∞ L2

BCG
error order error order time (sec)

2 1.67E-03 9.24E-04 82
4 4.01E-04 2.05 2.23E-04 2.05 160
8 9.99E-05 2.01 5.54E-05 2.01 308
16 2.49E-05 2.00 1.38E-05 2.00 568
32 6.23E-06 2.00 3.46E-06 2.00 1104
64 1.56E-06 2.00 8.65E-07 2.00 2038
128 3.89E-07 2.00 2.16E-07 2.00 3802
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The ”aircraft” Interface (Heat Eqn.)
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Table: Convergence tests for solving the ImIBVP with the
”aircraft”-shaped interface of various scale factors

scale factor
no. of points

L∞ L2 BCG

k IP FP time (sec)
1.0 662 909 5.24E-09 3.78E-10 121
1.3 856 1198 3.41E-09 2.48E-10 122
1.6 1060 1479 4.32E-09 3.16E-10 141
1.9 1266 1765 3.43E-09 2.20E-10 131
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Conclusion

Key characteristics of the developed AMIB method are:

▶ capable of solving problems over highly irregular domains

▶ capable of handling versatile boundary conditions

▶ unconditionally stable when solving time-dependent
problems

▶ accelerated by the FFT for high efficiency

▶ fourth-order accuracy (in space)
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