A Proportionally Geometric Cantor Set

Anastasia Clements

EPaDel Section Meeting - Undergraduate Speaker Session

Fall 2024

Anastasia Clements [A Proportionally Geometric Cantor Set](#page-38-0)

[Introduction](#page-2-0)

- **[Cantor Set Definition](#page-3-0)**
- **•** [Interpretation](#page-12-0)

² [A Proportionally Geometric Cantor Set](#page-17-0)

- **•** [Measure](#page-18-0)
- [Known Properties](#page-26-0)
- **[Open Questions](#page-27-0)**
- [Bonus: Proof of Measure function](#page-29-0)

つくい

Figure: Ternary Cantor Set up to C⁴

[Introduction](#page-2-0)

 299

∍ \sim

э

э

The right and left endpoints for a given sub-interval occuring at C_n of the middle-thirds Cantor set can be defined recursively as follows:

$$
R(a, b, n) = \frac{a + b - \frac{1}{3}|a - b|}{2}
$$

$$
L(a, b, n) = \frac{a + b + \frac{1}{3}|a - b|}{2}
$$

Where a, b are the endpoints of a prior subinterval (where the cut is occuring) in C_{n-1} and *n* is the current cut at C_n .

Notice that the size of the cut interval is proportional to the measure of the previous interval $|a - b|$.

The right and left endpoints for a given sub-interval occuring at C_n of the middle-thirds Cantor set can be defined recursively as follows:

$$
R(a, b, n) = \frac{a + b - \frac{1}{3}|a - b|}{2}
$$

$$
L(a, b, n) = \frac{a + b + \frac{1}{3}|a - b|}{2}
$$

Where a, b are the endpoints of a prior subinterval (where the cut is occuring) in C_{n-1} and *n* is the current cut at C_n .

Notice that the size of the cut interval is proportional to the measure of the previous interval $|a - b|$.

The right and left endpoints for a given sub-interval occuring at C_n of the middle-thirds Cantor set can be defined recursively as follows:

$$
R(a, b, n) = \frac{a + b - \frac{1}{3}|a - b|}{2}
$$

$$
L(a, b, n) = \frac{a + b + \frac{1}{3}|a - b|}{2}
$$

Where a, b are the endpoints of a prior subinterval (where the cut is occuring) in C_{n-1} and *n* is the current cut at C_n .

Notice that the size of the cut interval is proportional to the measure of the previous interval $|a - b|$.

メロメメ 御 メメ きょく モドー

目

 299

The Smith-Volterra-Cantor set, also known colloquially as the fat Cantor set, is defined by taking geometrically decreasing cuts from the unit interval.

The standard Smith-Volterra-Cantor set is defined as cutting $\left(\frac{1}{4}\right)$ $\frac{1}{4}$)ⁿ from each sub-interval in C_{n−1}.

This is a unique way of cutting the unit interval, as it leaves a perfect, no-where dense set (like the middle-thirds Cantor set); however, the standard Smith-Volterra-Cantor set retains a measure of $\frac{1}{2}$.

The Smith-Volterra-Cantor set, also known colloquially as the fat Cantor set, is defined by taking geometrically decreasing cuts from the unit interval.

The standard Smith-Volterra-Cantor set is defined as cutting $\left(\frac{1}{4}\right)$ $\frac{1}{4}$)ⁿ from each sub-interval in C_{n−1}.

This is a unique way of cutting the unit interval, as it leaves a perfect, no-where dense set (like the middle-thirds Cantor set); however, the standard Smith-Volterra-Cantor set retains a measure of $\frac{1}{2}$.

Figure: Smith-Volterra-Cantor Set up to C⁴

4 17 18

 \sim → 重 ★ E

化重 的人

 299

Similar to the middle-thirds Cantor set, the endpoints in C_n of the Smith-Volterra-Cantor set can be naturally defined recursively as follows:

$$
R(a, b, n) = \frac{a + b - \left(\frac{1}{4}\right)^n}{2}
$$

$$
L(a, b, n) = \frac{a + b + \left(\frac{1}{4}\right)^n}{2}
$$

Where a, b are the endpoints of a prior sub-interval in C_{n-1} and *n* is the current cut at C_n .

Notice that this recursion is lacking a key feature that was included in the middle-thirds Cantor set: proportionality!

Similar to the middle-thirds Cantor set, the endpoints in C_n of the Smith-Volterra-Cantor set can be naturally defined recursively as follows:

$$
R(a, b, n) = \frac{a + b - \left(\frac{1}{4}\right)^n}{2}
$$

$$
L(a, b, n) = \frac{a + b + \left(\frac{1}{4}\right)^n}{2}
$$

Where a, b are the endpoints of a prior sub-interval in C_{n-1} and *n* is the current cut at C_n .

Notice that this recursion is lacking a key feature that was included in the middle-thirds Cantor set: proportionality!

It is from this modification of the standard Smith-Volterra-Cantor set that the definition of a Proportionally Geometric Cantor set comes from.

Recursively, the endpoints of a sub-interval in C_n of our Proportionally Geometric Cantor set is defined as one would expect:

$$
R(a, b, n) = \frac{a + b - \left(\frac{1}{4}\right)^n |a - b|}{2}
$$

$$
L(a, b, n) = \frac{a + b + \left(\frac{1}{4}\right)^n |a - b|}{2}
$$

Where a, b are distinct endpoints of a sub-interval of C_{n-1} .

It is from this modification of the standard Smith-Volterra-Cantor set that the definition of a Proportionally Geometric Cantor set comes from.

Recursively, the endpoints of a sub-interval in C_n of our Proportionally Geometric Cantor set is defined as one would expect:

$$
R(a, b, n) = \frac{a + b - (\frac{1}{4})^n |a - b|}{2}
$$

$$
L(a, b, n) = \frac{a + b + (\frac{1}{4})^n |a - b|}{2}
$$

Where a, b are distinct endpoints of a sub-interval of C_{n-1} .

Note that this Proportionally Geometric Cantor set preserves an essence of self-similarity, as each sub-interval is itself almost a Proportionally Geometric Cantor set.

The reason Proportionally Geometric Cantor sets are not self-similar is that the starting cut is now shifted ahead n "steps" and scaled down, which is not an exact copy of the original set.

From these recursive definitions, explicit equations for total measure, sub-interval length, cut length at a given C_n , and endpoints location can be derived.

つくい

From these recursive definitions, explicit equations for total measure, sub-interval length, cut length at a given C_n , and endpoints location can be derived.

つくい

Figure: Proportionally Geometric Cantor Set up to C⁴

[A Proportionally Geometric](#page-17-0) [Cantor Set](#page-17-0)

 200

Explicit Formula for Length and Measure

By taking our recursive equation $R(a, b, n)$ with $a = 0$, we can find an explicit equation for the length of a sub-interval. In the interest of standardization, all formulas will be written in terms of the total measure at some C_n .

Note this is derived from the sub-interval equation, and not vice-versa.

The measure function $d(n)$ for a Proportionally Geometric Cantor set (with this construction) at some C_n is the following partial product:

$$
d(n) = \prod_{i=1}^{n} \left(1 - \left(\frac{1}{4}\right)^i\right).
$$

Explicit Formula for Length and Measure

By taking our recursive equation $R(a, b, n)$ with $a = 0$, we can find an explicit equation for the length of a sub-interval. In the interest of standardization, all formulas will be written in terms of the total measure at some C_n . Note this is derived from the sub-interval equation, and not

vice-versa.

The measure function $d(n)$ for a Proportionally Geometric Cantor set (with this construction) at some C_n is the following partial product:

$$
d(n)=\prod_{i=1}^n\left(1-\left(\frac{1}{4}\right)^i\right).
$$

From the equation for the measure at C_n , we can determine explicitly the length of a sub-interval at some C_n (denoted $I(n)$) as well as the individual size of the cut(s) performed at that C_n (denoted $J(n)$).

$$
I(n) = \frac{1}{2^n} d(n)
$$

$$
J(n) = \frac{1}{2^{n-1}(4^n - 1)} d(n)
$$

These equations are tremendously useful in explicitly determining the endpoints at a given C_n .

ഹൈ

From the equation for the measure at C_n , we can determine explicitly the length of a sub-interval at some C_n (denoted $I(n)$) as well as the individual size of the cut(s) performed at that C_n (denoted $J(n)$).

$$
I(n) = \frac{1}{2^n} d(n)
$$

$$
J(n) = \frac{1}{2^{n-1}(4^n - 1)} d(n)
$$

These equations are tremendously useful in explicitly determining the endpoints at a given C_n .

$$
\lim_{n\to\infty}d(n)=\prod_{i=1}^{\infty}\left(1-\left(\frac{1}{4}\right)^i\right)
$$

This infinite product converges, call it d (and is represented by the q-Pochhammer Symbol $(\frac{1}{4})$ $\frac{1}{4}$; $\frac{1}{4}$ $\frac{1}{4}\big)_{\infty}$.

$$
d = \left(\frac{1}{4}\right)_{\infty} \approx 0.68853753712\dots
$$

$$
\lim_{n\to\infty}d(n)=\prod_{i=1}^{\infty}\left(1-\left(\frac{1}{4}\right)^i\right)
$$

This infinite product converges, call it d (and is represented by the q-Pochhammer Symbol $(\frac{1}{4})$ $\frac{1}{4}$; $\frac{1}{4}$ $\frac{1}{4}\big)_{\infty}$.

$$
d = \left(\frac{1}{4}\right)_{\infty} \approx 0.68853753712\dots
$$

ഹൈ

$$
\lim_{n\to\infty}d(n)=\prod_{i=1}^{\infty}\left(1-\left(\frac{1}{4}\right)^i\right)
$$

This infinite product converges, call it d (and is represented by the q-Pochhammer Symbol $(\frac{1}{4})$ $\frac{1}{4}$; $\frac{1}{4}$ $\frac{1}{4}\big)_{\infty}$).

$$
d=\left(\frac{1}{4}\right)_{\infty}\approx 0.68853753712\dots
$$

ഹൈ

$$
\lim_{n\to\infty}d(n)=\prod_{i=1}^{\infty}\left(1-\left(\frac{1}{4}\right)^i\right)
$$

This infinite product converges, call it d (and is represented by the q-Pochhammer Symbol $(\frac{1}{4})$ $\frac{1}{4}$; $\frac{1}{4}$ $\frac{1}{4}\big)_{\infty}$).

$$
d = \left(\frac{1}{4}\right)_{\infty} \approx 0.68853753712\dots
$$

Currently we have verified the following properties of our Proportionally Geometric Cantor set:

- C is perfect (closed and every point in C is a limit point of C).
- **C** is no-where dense.
- \bullet C is uncountable.
- C has finite, non-zero measure.

- What is the Hausdorff Dimension of a Proportionally Geometric Cantor set?
- What do higher dimensional constructions of Proportionally Geometric Cantor sets look like?

Thank you for attending!

 2990

∍

化重新化重新

Bonus: Proof of Measure function

Proof: We shall prove by induction that the measure function

$$
d(n) = \prod_{i=1}^n \left(1 - \left(\frac{1}{4}\right)^i\right)
$$

for all integers $n > 1$.

We begin with the observation that at C_n there are exactly 2^n sub-intervals.

We define $r(n)$ to be the first (left-most) right endpoint of C_n so that $r(0) = 1$.

 $r(n)$ can be defined recursively for $n \geq 1$:

$$
r(n) = R(0, r(n-1), n)
$$

Bonus: Proof of Measure function

Proof: We shall prove by induction that the measure function

$$
d(n) = \prod_{i=1}^n \left(1 - \left(\frac{1}{4}\right)^i\right)
$$

for all integers $n > 1$.

We begin with the observation that at C_n there are exactly 2^n sub-intervals.

We define $r(n)$ to be the first (left-most) right endpoint of C_n so that $r(0) = 1$.

 $r(n)$ can be defined recursively for $n \geq 1$:

 $r(n) = R(0, r(n-1), n)$

Bonus: Proof of Measure function

Proof: We shall prove by induction that the measure function

$$
d(n) = \prod_{i=1}^n \left(1 - \left(\frac{1}{4}\right)^i\right)
$$

for all integers $n > 1$.

We begin with the observation that at C_n there are exactly 2^n sub-intervals.

We define $r(n)$ to be the first (left-most) right endpoint of C_n so that $r(0) = 1$.

 $r(n)$ can be defined recursively for $n \geq 1$:

$$
r(n) = R(0, r(n-1), n)
$$

Since each sub-interval is equal in length, we have the following relationship:

$$
d(n)=2^n\cdot r(n).
$$

This gives us the following:

 $d(n) = 2^n \cdot r(n)$ $= 2^n \cdot R(0, r(n-1), n)$ $= 2^n$ $0 + r(n-1) - (\frac{1}{4})$ $\frac{1}{4}$)ⁿ|0 – r(n – 1)| 2 $= 2^{n-1} \cdot r(n-1) \left(1 \sqrt{1}$ 4 \bigwedge^n $= d(n-1) (1 \sqrt{1}$ 4 \bigwedge^n

つくい

here we can begin induction. Anastasia Clements [A Proportionally Geometric Cantor Set](#page-0-0)

Since each sub-interval is equal in length, we have the following relationship:

$$
d(n)=2^n\cdot r(n).
$$

This gives us the following:

From here we can begin induction.

$$
d(n) = 2n \cdot r(n)
$$

= 2ⁿ \cdot R(0, r(n - 1), n)
= 2ⁿ \cdot \frac{0 + r(n - 1) - (\frac{1}{4})ⁿ|0 - r(n - 1)|}{2}
= 2ⁿ⁻¹ \cdot r(n - 1) \left(1 - (\frac{1}{4})ⁿ\right)
= d(n - 1) \left(1 - (\frac{1}{4})ⁿ\right)

Anastasia Clements [A Proportionally Geometric Cantor Set](#page-0-0)

つくい

Since each sub-interval is equal in length, we have the following relationship:

$$
d(n)=2^n\cdot r(n).
$$

This gives us the following:

$$
d(n) = 2n \cdot r(n)
$$

= 2ⁿ \cdot R(0, r(n - 1), n)
= 2ⁿ \cdot \frac{0 + r(n - 1) - (\frac{1}{4})ⁿ|0 - r(n - 1)|}{2}
= 2ⁿ⁻¹ \cdot r(n - 1) \left(1 - (\frac{1}{4})ⁿ\right)
= d(n - 1) \left(1 - (\frac{1}{4})ⁿ\right)

From here we can begin induction.

Anastasia Clements [A Proportionally Geometric Cantor Set](#page-0-0)

つくい

Base Case at $n = 1$:

$$
d(1) = 2^0 \cdot r(0) \left(1 - \left(\frac{1}{4}\right)^1 \right)
$$

$$
= 1 \cdot 1 \cdot \left(1 - \frac{1}{4} \right)
$$

$$
= \frac{3}{4}
$$

$$
= \prod_{i=1}^{1} \left(1 - \frac{1}{4} \right)
$$

thus proving our statement holds for $n = 1$.

押 トメミ トメミト

Base Case at $n = 1$:

$$
d(1) = 2^0 \cdot r(0) \left(1 - \left(\frac{1}{4}\right)^1 \right)
$$

$$
= 1 \cdot 1 \cdot \left(1 - \frac{1}{4} \right)
$$

$$
= \frac{3}{4}
$$

$$
= \prod_{i=1}^{1} \left(1 - \frac{1}{4} \right)
$$

thus proving our statement holds for $n = 1$.

メイラメイラメー

э

Inductive Step: We assume that $d(n) = \prod_{i=1}^n (1-(\frac{1}{4}))$ $(\frac{1}{4})^i$) holds for some values of n (as shown in the base case $n = 1$).

We will show that $d(n+1)$ holds:

$$
d(n+1) = 2n \cdot r(n) \left(1 - \left(\frac{1}{4}\right)^{n+1} \right)
$$

= $d(n) \left(1 - \left(\frac{1}{4}\right)^{n+1} \right)$
= $\left(\prod_{i=1}^{n} \left(1 - \left(\frac{1}{4}\right)^i \right) \right) \left(1 - \left(\frac{1}{4}\right)^{n+1} \right)$
= $\prod_{i=1}^{n+1} \left(1 - \left(\frac{1}{4}\right)^i \right)$
as required.

Anastasia Clements [A Proportionally Geometric Cantor Set](#page-0-0)

 200

Inductive Step: We assume that $d(n) = \prod_{i=1}^n (1-(\frac{1}{4}))$ $(\frac{1}{4})^i$) holds for some values of n (as shown in the base case $n = 1$).

We will show that $d(n+1)$ holds:

$$
d(n+1) = 2n \cdot r(n) \left(1 - \left(\frac{1}{4}\right)^{n+1} \right)
$$

=
$$
d(n) \left(1 - \left(\frac{1}{4}\right)^{n+1} \right)
$$

=
$$
\left(\prod_{i=1}^{n} \left(1 - \left(\frac{1}{4}\right)^{i} \right) \right) \left(1 - \left(\frac{1}{4}\right)^{n+1} \right)
$$

=
$$
\prod_{i=1}^{n+1} \left(1 - \left(\frac{1}{4}\right)^{i} \right)
$$

as required.

 $\sqrt{2}$) $\sqrt{2}$) $\sqrt{2}$)