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Abstract. We obtain sharp estimates for multidimensional generalisa-
tions of Vinogradov’s mean value theorem for arbitrary translation-dilation
invariant systems, achieving constraints on the number of variables ap-
proaching those conjectured to be the best possible. Several applications of
our bounds are discussed.

1. Introduction

The investigation of Diophantine problems of large degree is in general
fraught with difficulties only partially mollified by the presence of intrinsic
diagonal structure. Indeed, such analyses as are made available via the Hardy-
Littlewood (circle) method, when successful, involve complicated exponential
sum estimates widely considered to be amongst the most challenging in the sub-
ject. The application of Weyl differencing by Davenport, Birch and Schmidt,
on the one hand, involves a delicate interplay between the singular locus asso-
ciated with the problem and the quality of ensuing exponential sum estimates
(see [4], [5], [13]). As an inescapable feature of such approaches, the number
of variables required in a successful treatment grows exponentially with the
degree of the problem at hand. The extension of Vinogradov’s methods to
exponential sums in many variables, on the other hand, is notoriously compli-
cated. The work of Arkhipov, Karatsuba and Chubarikov [1], [2], for example,
permits substantially sharper conclusions to be drawn when partial diagonal
structure is present. However, the complexity of the underlying methods has
deterred a consideration of all but the simplest model situations (see [2] and
[9]). In addition, the available conclusions fail to achieve their conjectured
potential by a factor growing roughly like the logarithm of the total degree of
the associated translation-invariant Diophantine system.

Our goal in this paper is to extend the efficient congruencing method intro-
duced by the third author [21] so as to accommodate the generalised Vino-
gradov systems of Arkhipov, Karatsuba and Chubarikov (see [1], [2]). It tran-
spires that for systems of large degree, the bounds that we thereby derive miss
those conjectured to hold by a factor of only 2 or thereabouts, transforming
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the previous state of the art. Moreover, our methods are of such flexibility that
they may be successfully applied to translation-invariant systems of wide gen-
erality, and in particular to systems closely related to those subject to recent
investigations by quantitative arithmetic geometers studying the Manin-Peyre
conjectures (see [14, §4.15], [15]). Since our methods yield estimates no less
striking for such systems, we take the opportunity to derive rather general
estimates again coming within a constant factor of those conjectured to hold.
There are consequences of all of this work for exponential sum estimates of
Weyl-type, for the solubility of systems of Diophantine equations and related
problems, and for certain problems in additive combinatorics, and these we
also explore herein.

Rather than encumber the reader at this point with the substantial nota-
tional prerequisites entailed by a discussion of our most general conclusions,
we instead offer the more easily digestible corollaries particular to the model
problem considered in earlier work [9] of the first author. Let s, k and d be
natural numbers, and let X be a positive number. We focus attention on the
system of simultaneous Diophantine equations

s∑
j=1

xi1j1x
i2
j2 · · ·x

id
jd =

s∑
j=1

yi1j1y
i2
j2 · · · y

id
jd (1 6 i1 + . . .+ id 6 k). (1.1)

Here, the indices im are non-negative integers, so that a modest computation
reveals the total number of equations in the system (1.1) to be r = rd,k, where

rd,k =

(
k + d

d

)
− 1. (1.2)

Meanwhile, the total degree of the system (1.1), which is to say the sum of the
degrees of the equations comprising the system, is equal to K = Kd,k, where

Kd,k =
k∑
l=1

l

(
l + d− 1

l

)
=

d

d+ 1
(r + 1)k. (1.3)

In particular, in the familiar classical Vinogradov system with d = 1, one has
r = k and K = 1

2
k(k+1). Finally, we write Js,k,d(X) for the number of integral

solutions of the system (1.1) with 1 6 xjm, yjm 6 X (1 6 j 6 s, 1 6 m 6 d).

In §2, as a special case of Theorem 2.1, we derive an estimate for Js,k,d(X)
that is in many respects close to the best possible. Here and throughout,
implicit constants in Vinogradov’s notation � and � depend at most on s,
k, d and ε, unless otherwise indicated. The letter X should be interpreted as
a positive number sufficiently large in terms of s, k, d and ε.

Theorem 1.1. Suppose that s, k and d are natural numbers with k > 2 and
s > r(k + 1). Then for each ε > 0, one has Js,k,d(X)� X2sd−K+ε.

The special case of Theorem 1.1 with d = 1 is equivalent to [21, Theorem
1.1], a conclusion which has very recently been sharpened in [22, Theorem 1.1],
so that for k > 3 and s > k2 − 1, one has

Js,k,1(X)� X2s− 1
2
k(k+1)+ε.
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When d > 1, meanwhile, one may compare the conclusion of Theorem 1.1 with
work of Arkhipov, Karatsuba and Chubarikov [2]. Although set up slightly
differently, it is clear that the methods of the latter authors have the potential
to establish a bound of the shape

Js,k,d(X)� X2sd−K+∆s ,

where ∆s decays with s roughly like rke−s/(rk). In [9, Theorem 1.1] this con-
clusion was improved by the first author for sufficiently large values of k, so
that on writing

s0 = 1
2
rk(log k − 2 log log k),

one may take

∆s =

{
rke2−2s/(rk), for 1 6 s 6 s0,

r(log k)2e3−3(s−s0)/(2rk), for s > s0.

The estimate supplied by Theorem 1.1 is substantially sharper. Thus, provided
only that s > r(k + 1), one may take ∆s = ε for any positive number ε.
The number of variables required in typical applications, as we discuss in due
course, is thereby reduced by a factor of order log(rk).

In order to discern the strength of the estimate supplied by Theorem 1.1, we
must consider available lower bounds for the mean value Js,k,d(X), and thereby
infer plausible conjectures for corresponding upper bounds. In §3 we establish
the lower bound for Js,k,d(X) contained in the following theorem.

Theorem 1.2. Suppose that s, k and d are natural numbers. Then one has

Js,k,d(X)� Xsd +
d∑
j=1

X(2s−1)j+d−Kj,k .

It seems reasonable to conjecture that whenever ε > 0, one has the allied
upper bound

Js,k,d(X)� Xε
(
Xsd +

d∑
j=1

X(2s−1)j+d−Kj,k
)
.

Thus, when s is sufficiently large in terms of k and d, one expects that

Js,k,d(X)� X2sd−K+ε, (1.4)

as is confirmed by Theorem 1.1 for s > r(k + 1). We emphasise that here,
and throughout the introduction, we abbreviate rd,k to r and Kd,k to K. As
a consequence of Theorem 1.2, we show in Theorem 3.2 that when δ is a real
number with 2d/k < δ < 1, and

s 6
d

2d+ 2
(1− δ)r(k + 1),

then there is a positive number η = η(d, k) with the property that

Js,k,d(X)� X2sd−K+η.
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When d > 2, therefore, it follows that the conclusion of Theorem 1.1 comes
within a factor 2+2/d+O(d/k) of the least value of s for which the conjectured
upper bound (1.4) might conceivably hold. In such multidimensional Weyl
sums, a near-optimal conclusion of this type, merely a constant factor away
from the best possible, has hitherto been wholly beyond our grasp.

We next consider upper bounds for exponential sums of Weyl-type, the dis-
cussion of which is much facilitated by the introduction of additional notation.
It is convenient to abbreviate a monomial of the shape xi11 x

i2
2 · · ·x

id
d to xi, in

which i = (i1, i2, . . . , id). Likewise, we may write xi
m for xi1m1x

i2
m2 · · ·x

id
md. In

such circumstances, we put

|i| = i1 + . . .+ id.

Also, in place of the s-tuple (x1, . . . ,xs) we write x, and we adopt the conven-
tion that a 6 v 6 b is to mean that each coordinate vl of the vector v satisfies
a 6 vl 6 b. Equipped with these conventions, the Diophantine system (1.1)
assumes the compact shape

xi
1 + . . .+ xi

s = yi
1 + . . .+ yi

s (1 6 |i| 6 k),

and Js,k,d(X) counts the number of integral solutions of this system with 1 6
x,y 6 X.

Define the exponential sum f(α) = fd,k(α;X) by

fd,k(α;X) =
∑

16x6X

e(ψ(x;α)),

where

ψ(x;α) =
∑

16|i|6k

αix
i,

and, as usual, we write e(z) for e2πiz. Here, the subscript d that identifies x as
the d-tuple (x1, . . . , xd) may usually be omitted without leading to confusion.
As we have already noted, the number of coefficients αi is r. We adopt the
convention that, when G : [0, 1)n → C is measurable, then∮

G(β) dβ =

∫
[0,1)n

G(β) dβ.

It then follows from orthogonality that

Js,k,d(X) =

∮
|fd,k(α;X)|2s dα. (1.5)

Upper bounds for mean values of exponential sums such as f(α) may be
converted into Weyl-type estimates by means of variants of the large sieve
inequality. Before announcing such an estimate, which is a consequence of the
more general result recorded in Theorem 10.3, we pause to record a further
notational convention. When a ∈ Zn, we write (q, a) for the greatest common
divisor (q, a1, . . . , an).
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Theorem 1.3. Suppose that d and k are natural numbers with k > 2. Let σ
be any real number with

σ−1 >

(
2k

(
k + d− 1

d

)
− 2k + 1

)
(d+ 1).

Then whenever |fd,k(α;X)| > Xd−σ+ε, for some ε > 0, it follows that there
exist q ∈ N and aj ∈ Z (1 6 |j| 6 k) satisfying

(q, a) = 1, 1 6 q 6 Xkσ and |qαj − aj| 6 Xkσ−|j| (1 6 |j| 6 k).

The special case of Theorem 1.3 with d = 1 is very slightly weaker than [21,
Theorem 1.6], a conclusion which has recently been sharpened in [22, Theorem
11.2]. Thus, when d = 1, the conclusion of Theorem 1.3 holds whenever k > 4
and σ−1 > 4k(k − 2). The work of Arkhipov, Karatsuba and Chubarikov [2],
as interpreted and sharpened by the first author, yields a conclusion similar
to Theorem 1.3. Indeed, it follows from a corrected version1 of [9, Theorem
1.2] that a conclusion of similar form holds for sufficiently large values of k,
though with the constraint on the exponent σ replaced by a condition of the
shape σ−1 > 4

3
(d + 1)rk log(rk). On noting that

(
k+d−1
d

)
− 1 = rd,k−1 6 rd,k,

the superiority of our new bound is clear.

We next consider the application of our new estimates to Diophantine prob-
lems. When s, k and d are natural numbers, and aij is a non-zero integer for
1 6 |i| 6 k and 1 6 j 6 s, write

φi(x) =
s∑
j=1

aijx
i
j (1 6 |i| 6 k).

In §11, we consider the Diophantine system

φi(x) = 0 (1 6 |i| 6 k), (1.6)

consisting of r equations of total degree K. Let N(B) denote the number of
integral solutions of the system (1.6) with |x| 6 B. We follow Schmidt [13]
when defining the (formal) real and p-adic densities associated with the system
(1.6). When L > 0, define

λL(η) =

{
L(1− L|η|), when |η| 6 L−1,

0, otherwise,

and put

µL =

∫
|ξ|61

∏
16|i|6k

λL(φi(ξ)) dξ.

The limit σ∞ = lim
L→∞

µL, when it exists, is called the real density. Meanwhile,

given a natural number q, we write

M(q) = card
{
x ∈ (Z/qZ)sd : φi(x) ≡ 0 (mod q) (1 6 |i| 6 k)

}
.

1See the discussion following the proof of Theorem 10.2 below for an explanation of the
need for a modest correction in [9, Theorem 1.2].
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For each prime number p, we then put

σp = lim
h→∞

ph(r−sd)M(ph),

provided that this limit exists, and refer to σp as the p-adic density.

As a special case of Theorem 11.1, we establish an asymptotic formula for
N(B) valid whenever s > 2r(k + 1) + 1.

Theorem 1.4. Suppose that s, k and d are natural numbers with k > 2 and
s > 2r(k + 1) + 1. In addition, let aij (1 6 |i| 6 k, 1 6 j 6 s) be non-
zero integers. Then provided that the system of equations (1.6) possesses non-
singular real and p-adic solutions for each prime number p, one has

N(B) ∼ σ∞

(∏
p

σp

)
Bsd−K . (1.7)

In particular, the system (1.6) satisfies the Hasse Principle.

We note that [21, Theorem 9.1] delivers the same conclusion as Theorem
1.4 in the special case d = 1. As is apparent from the lower bound supplied
by Theorem 1.2 and the ensuing discussion, there exist choices of coefficients
a for which the asymptotic formula (1.7) necessarily fails when k is large and

s 6
d

d+ 1
(1 +O(d/k))r(k + 1). (1.8)

Consequently, the bound on the number of variables in the hypotheses of
Theorem 1.4 is within a factor 2 + 2/d + O(d/k) of the best possible bound
for such systems. Indeed, the argument underlying the proof of Theorem
1.2 shows that such remains true in wider generality. The point here is that
special subvarieties contain the bulk of the set of integral solutions whenever
the bound (1.8) holds on the number s of blocks of d variables. Conclusions
available hitherto of the type presented in Theorem 1.4 impose bounds on the
number of blocks of variables weaker than our own by a factor of order log(rk).

As a special case of Corollary 11.2, we obtain an asymptotic formula for the
mean value Js,k,d(X).

Theorem 1.5. Let k and d be natural numbers with k > 2. Then whenever
s > r(k + 1) + 1, there exist positive constants C = C (s, k, d) and δ = δ(k, d)
such that

Js,k,d(X) = CX2sd−K +O(X2sd−K−δ).

A conclusion analogous to that of Theorem 1.5 is obtained in [9, Theorem
1.3], subject to the condition that k be sufficiently large and

s > rk(2
3

log r + 1
2

log k + log log k + 2d+ 4).

Again, the conclusion of Theorem 1.5 is much superior. When d = 1 and k > 3,
meanwhile, the conclusion of Theorem 1.5 is a consequence of [21, Theorem
1.2].
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As a penultimate application of the bounds supplied by Theorem 1.1, in §11
we consider the rational linear spaces of projective dimension d − 1 lying on
the diagonal hypersurface

c1z
k
1 + . . .+ csz

k
s = 0, (1.9)

with c1, . . . , cs fixed non-zero integers. Such a linear space may be written in
the form

L (x1, . . . ,xd) = {t1x1 + . . .+ tdxd : t1, . . . , td ∈ Q},
for suitable linearly independent vectors x1, . . . ,xd ∈ Zs. As noted in [9], by
substituting into (1.9) and using the multinomial theorem to collect together
coefficients of ti, one finds that the linear space L (x) corresponds to a solution
y1, . . . ,ys ∈ Zd of the Diophantine system

c1y
i
1 + . . .+ csy

i
s = 0 (|i| = k). (1.10)

This correspondence is made explicit by means of the simple relation

xij = yji (1 6 i 6 d, 1 6 j 6 s).

Write Ns,k,d(X) for the number of integral solutions of the system (1.10) with
|y| 6 X, and put

L = k

(
k + d− 1

k

)
.

In §11 we indicate how to prove an asymptotic formula for Ns,k,d(X) subject
to the condition that s > 2r(k+1)+1. In this context, we say that the integral
s-tuple c is a non-singular choice of coefficients for k and d when the system
of equations (1.10) has non-singular real and p-adic solutions, for every prime
number p.

Theorem 1.6. Suppose that s, k and d are natural numbers with k > 2 and
s > 2r(k+ 1) + 1. Suppose further that c ∈ (Z \ {0})s is a non-singular choice
of coefficients for k and d. Then there exist positive constants D = D(s, k, d; c)
and ν = ν(k, d) such that

Ns,k,d(X) = DXsd−L +O(Xsd−L−ν).

In particular, one finds that whenever s > 2r(k+1)+1 and appropriate local
solubility conditions are met, then the hypersurface defined by (1.9) contains
an abundance of rational linear spaces of projective dimension d−1. A perusal
of [9] reveals that, for sufficiently large values of k, a similar conclusion is
asserted by Theorem 1.4 of the latter source, subject instead to the more
stringent condition

s > rk(4
3

log r + log k + 2 log log k + 4d+ 8).

We remark that the lower bound s > 2r(k + 1) + 1 in Theorem 1.6 should be
susceptible to some small improvement by adapting the methods of [20] to the
present multidimensional setting. Moreover, when the degree k is very small,
an approach of the first author [10] motivated by a method of Hua proves
superior in some situations.
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Further applications within the orbit of our methods and bounds include
the generalised Waring problem of representing a given polynomial

Φ(t1, . . . , td) ∈ Z[t]

in the form

Φ(t) =
s∑
j=1

(x1jt1 + . . .+ xdjtd)
k,

and also results concerning the number of integral solutions of Diophantine
inequalities modulo 1. We refer the reader to [2] for a discussion of some
such problems, and leave to the reader the satisfaction of incorporating our
new bounds into the established methods so as to make similarly striking
improvements over the previous state of knowledge.

As a final application of our new bounds for multidimensional Weyl sums,
we announce an application in additive combinatorics based on the second
author’s recent work [11] on translation invariant systems of equations devoid
of solutions in multidimensional sets. In Theorem 11.3 below we present a
conclusion more general than the one we presently record in Theorem 1.7. For
the purpose at hand, we describe the integral s-tuple c as an extended non-
singular choice of coefficients for k and d when (i) one has c1 + . . . + cs = 0,
and (ii) the system of equations

c1y
i
1 + . . .+ csy

i
s = 0 (1 6 |i| 6 k) (1.11)

has non-singular real and p-adic solutions, for every prime number p.

Certain solutions of the system (1.11) are atypically simple to obtain, such
as the trivial solutions lying on the diagonal y1 = y2 = . . . = ys. We formalise
this notion by distinguishing two types of special solutions y of (1.11). We
describe y as projected when there is a translate of a proper subspace of Qd

that contains all of y1, . . . ,ys. The aforementioned diagonal solutions are
therefore projected, since they lie in a translate of the trivial subspace {0} of
Qd. Also, we say that y is a subset-sum solution when there exists a partition
{1, 2, . . . , s} = J1∪ . . .∪Jl, into l > 2 disjoint non-empty sets Jv, such that
for 1 6 v 6 l one has ∑

u∈Jv

cuy
i
u = 0 (1 6 |i| 6 k).

In the special case in which∑
u∈Jv

cu = 0 (1 6 v 6 l),

one sees that there are trivial subset-sum solutions in which yu = yw whenever
u ∈Jv and w ∈Jv (1 6 v 6 l).

Theorem 1.7. Suppose that s, k and d are natural numbers with k > 2 and
s > 2r(k + 1) + 1. Suppose further that c ∈ (Z \ {0})s is an extended non-
singular choice of coefficients for k and d, so that c1 + . . . + cs = 0. Let A
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be a subset of Zd ∩ [1, N ]d, and suppose that the only solutions of the system
(1.11) from A are either projected or subset-sum solutions. Then one has

card(A )� Nd(log logN)−1/(s−1).

This theorem is a higher dimensional cousin of [11, Theorem 5.1], which
supplies an analogous conclusion for a case involving binary forms. Theorem
1.7 shows that when card(A ) grows more rapidly than Nd(log logN)−1/(s−1),
then the system (1.11) contains solutions from A besides such obvious ones
as the diagonal solutions with y1 = . . . = ys. As we see in §3, the extended
system (1.11) contains more general special subvarieties defined by means of a
projection process, the simplest of which set one or more variables to be zero.
In Theorem 11.3 we present a conclusion that refines Theorem 1.7 in which,
under the same hypotheses concerning the cardinality of A , one finds that
the system (1.11) contains solutions from A which avoid all of these special
subvarieties. In this way, one may legitimately describe the solutions of (1.11)
thus shown to exist as honestly non-trivial. The interested reader will find the
necessary ideas in earlier work [11] of the second author.

It may be useful to provide an informal sketch hinting at the argument un-
derlying the proof of Theorem 1.1 so that the reader is better prepared to
draw parallels with previous approaches. A more comprehensively illuminated
sketch of this argument in the case d = 1 may be found in [21, §2]. In common
with the previous approaches of [2] and [9], the basic tool employed in our
proof of Theorem 1.1 is a (so-called) p-adic iteration mirroring the one devised
by Linnik [6] in the classical setting with d = 1. Thus, we begin by artifi-
cially introducing a congruence condition, modulo a suitable prime p, amongst
the bulk of the variables underlying the mean value (1.5). An application of
Hölder’s inequality leads to a new mean value in which the latter variables
lie in common congruence classes across blocks. At this point, the multiple
translation invariance of the system (1.1) may be utilised so as to pass to the
zero congruence class, and thereby a congruence condition is forced on a subset
of the variables of greater strength than that previously introduced. The ap-
proach of [2] is to choose the prime p in such a way that this strong congruence
condition forces a diagonal condition amongst blocks of variables, and thereby
one is able to bound a mean value involving 2(s + r) blocks of d variables in
terms of a corresponding mean value involving 2s blocks of d variables. In [9]
the strong congruence condition is interpreted as a differencing process analo-
gous to, though more efficient than, that of Weyl. By appropriate use of the
Cauchy-Schwarz inequalities, one is able to repeat this efficient differencing
process, deferring the moment at which to force the diagonal condition. In
the present paper, following [21], we instead interpret the strong congruence
condition as an efficient method of imposing a second artificial congruence
condition amongst variables. By appropriate application of Hölder’s inequal-
ity, one recovers a new mean value resembling that obtained in the first step,
but now yielding a fresh congruence condition amongst variables significantly
stronger than before. If one begins with a mean value significantly larger in
size than anticipated, then repeated application of this efficient congruencing
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procedure yields a related mean value larger in size than that anticipated by an
amount so large that even a trivial estimate demonstrates the presumed initial
deviation from the expected size to be untenable. In this way, one shows that
the mean value under consideration has size very close to that expected.

We finish by emphasising that the methods of this paper are robust to
changes of the ambient ring. Thus the rational integers Z central to this paper
may be replaced with the ring of integers from a number field, or the polynomial
ring Fq[t], without diminishing the strength of the ensuing estimates. Such
ideas have been explored very recently in the case d = 1 in work emerging
from the body of research exploiting the efficient congruencing method (see [7]
and [23]).

In §2 we introduce the general translation-dilation invariant systems which
constitute the central objects of attention in this paper. Then, in §3, we discuss
the lower bounds recorded in Theorem 1.2. The notation and infrastructure
required for our most general conclusions is discussed in §4, and then in §5 we
derive the basic mean value estimates which initiate our efficient congruencing
argument. Next, in §6, we provide estimates for the number of solutions of
a system of basic congruences. Here, the singular locus of the system is of
particular concern. The conditioning process, required to guarantee appropri-
ate non-singularity conditions, is engineered in §7, and in §8 we discuss the
efficient congruencing process itself. In §9 we combine the output of §§7 and 8
so as to deliver Theorem 1.1 via an iterative process. Consequences for Weyl-
type estimates are discussed in §10, yielding the conclusion of Theorem 1.3.
Finally, in §11 we sketch the arguments required to establish the Diophantine
consequences recorded in Theorems 1.4-1.7.

2. Translation-dilation invariant systems

In order to describe our most general conclusions, we must introduce some
notation having flexibility sufficient for our needs. An overly prescriptive ap-
proach has the potential to shroud the details of our arguments in a thick
blanket of impenetrable symbols. With this undesirable potential outcome in
mind, we opt for a somewhat abstract approach, and only later do we spend
time detailing the most interesting situations.

Let r, s and d be natural numbers, and consider a system of homogeneous
polynomials F = (F1, . . . , Fr), where Fj(z) ∈ Z[z1, . . . , zd] (1 6 j 6 r). We
investigate the system of Diophantine equations

s∑
i=1

(F(xi)− F(yi)) = 0, (2.1)

in which xi = (xi1, . . . , xid) and yi = (yi1, . . . , yid) for 1 6 i 6 s. Note
that, in view of our conventions concerning vector notation, the system (2.1)
consists of r simultaneous Diophantine equations. Write x = (x1, . . . ,xs) and
y = (y1, . . . ,ys), and denote by Js(X;F) the number of integral solutions of
the system (2.1) with 1 6 x,y 6 X.
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In this paper we are concerned with translation-dilation invariant systems
of the shape (2.1). With the discussion to come in mind, we take a pragmatic
approach to defining such systems. We say that the system F = (F1, . . . , Fr)
is translation-dilation invariant if:

(i) the polynomials F1, . . . , Fr are each homogeneous of positive degree, and

(ii) there exist polynomials

cjl ∈ Z[ξ1, . . . , ξd] (1 6 j 6 r and 0 6 l 6 j),

with cjj = 1 for 1 6 j 6 r, having the property that whenever ξ ∈ Zd, then

Fj(x + ξ) = cj0(ξ) +

j∑
l=1

cjl(ξ)Fl(x) (1 6 j 6 r). (2.2)

Extend the definition of the coefficients cjl by putting cjl(ξ) = 0 when l > j.
Then on writing c0(ξ) = (cj0(ξ))16j6r and C(ξ) for the matrix (cjl(ξ))16j,l6r,
we see that the relations (2.2) are summarised by the formula

F(x + ξ) = C(ξ)F(x) + c0(ξ). (2.3)

Notice that the matrix C(ξ) is lower unitriangular, which is to say that it
is a lower triangular matrix whose main diagonal entries are all 1. Suppose
that s is a natural number, that λ is a non-zero rational number, and ξ ∈ Zd.
Then we see from (2.2) that the Diophantine system (2.1) possesses an integral
solution x,y if and only if one has

s∑
i=1

(F(λxi + ξ)− F(λyi + ξ)) = 0. (2.4)

This observation justifies the description of such systems of equations as trans-
lation-dilation invariant. We should note that while this formal definition fa-
cilitates many of our arguments, it is clear that one may rearrange the ordering
of the forms, and also consider independent linear combinations of the original
forms, without altering the number of integral solutions of the system (2.1)
counted by Js(X;F). Thus we may be expedient in most circumstances, and
instead describe a system as translation-dilation invariant when it is equivalent
in such a manner to some new system which is translation-dilation invariant
in the strict sense.

We emphasise that translation-dilation invariant systems are easily gener-
ated. Given a collection of homogeneous polynomials

G1, . . . , Gh ∈ Z[z1, . . . , zd],

consider the set F consisting of all the partial derivatives

∂l1+...+ldGj(z)

∂zl11 . . . ∂z
ld
d

(1 6 j 6 h), (2.5)

with li > 0 (1 6 i 6 d). Plainly, when l1 + . . . + ld exceeds the largest total
degree of any of the polynomials Gj, this partial derivative vanishes. The
set F is consequently finite. Let F0 denote the subset of F consisting of
all polynomials in F having positive degree. We write F0 = {F1, . . . , Fr},
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labelling the elements in such a way that degF1 6 degF2 6 . . . 6 degFr.
An application of the multidimensional version of Taylor’s theorem now shows
that the relations (2.2) hold for some choice of coefficients cjl(ξ) ∈ Z[ξ1, . . . , ξd]
satisfying cjj(ξ) = 1 (1 6 j 6 r). Since we may replace the set of forms F0 by
any subset whose span contains the polynomials F1, . . . , Fr, there is no loss of
generality in supposing the set {F1, . . . , Fr} to be linearly independent. Such
a system of forms we call reduced.

Finally, by replacing the forms F1, . . . , Fr by appropriate linear combinations
of the original forms, we find that there is no loss of generality also in supposing
that the matrix C(ξ) with entries cjl(ξ) is lower unitriangular. This new system
F = (F1, . . . , Fr), generated from the partial derivatives (2.5), is a reduced
translation-dilation invariant system.

We are now almost equipped to state our main theorem, but first pause
to introduce some parameters associated with a translation-dilation invariant
system of polynomials F. When F = (F1, . . . , Fr) consists of polynomials
Fj(z) ∈ Z[z1, . . . , zd], we refer to the number of variables d = d(F) in F as
the dimension of the system. In addition, we describe the number of forms
r = r(F) comprising F as the rank of the system. We write kj = kj(F) for the
total degree of the polynomial Fj, and then define the degree k = k(F) of the
system F by

k(F) = max
16j6r

kj(F),

and the weight K = K(F) by

K(F) =
r∑
j=1

kj(F).

Our goal in §§4-9 is the proof of the following mean value estimate, which
represents the main theorem of this paper.

Theorem 2.1. Let F be a reduced translation-dilation invariant system of
polynomials having dimension d, rank r, degree k and weight K. Suppose that
s is a natural number with s > r(k + 1). Then for each ε > 0, one has
Js(X;F)� X2sd−K+ε.

So far as we are aware, no mean value estimate available in the literature has
generality to compete with Theorem 2.1. Moreover, when d > 2 the estimates
available hitherto are considerably weaker, even in the special situations in
which they are applicable. In order to illustrate the ease with which estimates
may be extracted from Theorem 2.1, we finish this section with a brief discus-
sion of some simple cases, and in particular we show how to establish Theorem
1.1 as a consequence of Theorem 2.1.

(a) The classical system of Vinogradov [16], [17]. Consider the seed polynomial
zk (k > 1). By taking successive derivatives, we find that an associated reduced
translation-dilation invariant system of polynomials is F = (zk, zk−1, . . . , z).
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This system has dimension 1, rank k, degree k and weight

K =
k∑
j=1

j = 1
2
k(k + 1).

Then it follows from Theorem 2.1 that when s > k(k + 1), one has

Js(X;F)� X2s− 1
2
k(k+1)+ε.

This estimate recovers the main conclusion of the third author’s recent work
introducing the efficient congruencing method to Vinogradov’s mean value
theorem (see [21, Theorem 1.1]). We note that subsequent work of the third
author leads to the improved constraint s > k2− 1 on the number of variables
in this conclusion (see [22, Theorem 1.1]).

(b) The system of Parsell [9]. Consider the situation with d > 2 and seed

polynomials zl11 z
l2
2 . . . z

ld
d (|l| = k). By taking successive partial derivatives,

we find that an associated reduced translation-dilation invariant system of
polynomials is

F = (zi11 z
i2
2 . . . z

id
d : 1 6 |i| 6 k).

This system has dimension d, rank

r =
∑

16|i|6k

1 =

(
k + d

d

)
− 1, (2.6)

degree k and weight

K =
k∑
l=1

l
∑
|i|=l

1 =
k∑
l=1

l

(
l + d− 1

l

)
=

d

d+ 1
(r + 1)k. (2.7)

In this instance, it follows from Theorem 2.1 that when s > r(k + 1), one has
Js(X;F) � X2sd−K+ε. In view of (1.2) and (1.3), this completes the proof of
Theorem 1.1.

(c) The system of Arkhipov, Karatsuba and Chubarikov [2]. Consider the sit-
uation with d > 2 and l > 1 and the seed polynomial zl1z

l
2 . . . z

l
d. By taking

successive partial derivatives, we find that an associated reduced translation-
dilation invariant system of polynomials is

F = (zi11 z
i2
2 . . . z

id
d : 0 6 i 6 l, i 6= 0). (2.8)

This system has dimension d, rank

r =
∑
06i6l
i6=0

1 =
∑

06i16l

. . .
∑

06id6l

1− 1 = (l + 1)d − 1, (2.9)
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degree dl, and weight

K =
∑
06i6l

|i| =
∑

06i16l

. . .
∑

06id6l

(i1 + . . .+ id)

= d
∑

06i16l

. . .
∑

06id6l

id

= d(l + 1)d−1 · 1
2
l(l + 1) = 1

2
dl(l + 1)d. (2.10)

In this instance, Theorem 2.1 delivers a conclusion important enough to sum-
marise as a corollary.

Corollary 2.2. Let d and l be natural numbers, and let F be the reduced
translation-dilation invariant system given by (2.8). Suppose that s is a natural
number with s > (dl + 1)((l + 1)d − 1). Then for each ε > 0, one has

Js(X;F)� X2sd−K+ε,

where K = 1
2
dl(l + 1)d.

A conclusion similar to that provided by Corollary 2.2, but with the condi-
tion s > (dl + 1)((l + 1)d − 1) replaced by

s > Cdl(l + 1)d log(dl(l + 1)d),

for a suitable positive constant C, may be extracted from [2, Theorem 1 of
Chapter III.1]. The superiority of our new bound is self-evident.

(d) Simple binary systems. A system of relevance to recent work in quantitative
arithmetic geometry (see [14, §4.15],[15]) deserves to be singled out for special
attention. Consider the situation with k1 > k2 > 1 and the seed polynomial
zk11 z

k2
2 . By taking successive partial derivatives, we find that an associated

reduced translation-dilation invariant system of polynomials is

F = (zi11 z
i2
2 : 0 6 i1 6 k1, 0 6 i2 6 k2 and (i1, i2) 6= (0, 0)). (2.11)

This system has dimension 2, rank

r =
∑

06i16k1

∑
06i26k2

1− 1 = (k1 + 1)(k2 + 1)− 1,

degree k1 + k2, and weight

K =
∑

06i16k1

∑
06i26k2

(i1 + i2)

= (k1 + 1) · 1
2
k2(k2 + 1) + (k2 + 1) · 1

2
k1(k1 + 1)

= 1
2
(k1 + k2)(k1 + 1)(k2 + 1).

By applying Theorem 2.1, we obtain the following corollary.

Corollary 2.3. Let k1, k2 ∈ N, and let F be the reduced translation-dilation
invariant system given by (2.11). Suppose that s is a natural number with
s > (k1k2 + k1 + k2)(k1 + k2 + 1). Then for each ε > 0, one has

Js(X;F)� X4s−K+ε,

where K = 1
2
(k1 + k2)(k1 + 1)(k2 + 1).



MULTIDIMENSIONAL WEYL SUMS 15

(e) The binary systems of Prendiville [11]. Consider the situation with k > 1
and the seed polynomial given by the binary form Φ(z1, z2) ∈ Z[z1, z2] of degree
k. In this instance, we extract the partial derivatives

∂i1+i2Φ(z1, z2)

∂zi11 ∂z
i2
2

(i1 > 0, i2 > 0),

and restrict attention to any subset which spans the set of all partial derivatives
of positive degree, yet is linearly independent over Q. We take the polynomials
in this spanning set to be our reduced translation-dilation invariant system F.
The number of partial derivatives with i1 + i2 = l is plainly l + 1, while the
number of monomials zj11 z

j2
2 with j1 + j2 = m is m+ 1. Thus we see that this

system has dimension d = 2, rank

r 6
[k/2]∑
l=0

(l + 1) +

k−[k/2]−1∑
m=1

(m+ 1) 6 1
4
k(k + 4),

degree k and weight

K 6
[k/2]∑
l=0

(k − l)(l + 1) +

k−[k/2]−1∑
m=1

m(m+ 1) 6 1
8
k(k + 2)2.

In typical situations, indeed, one has K ∼ 1
8
k3. By applying Theorem 2.1, we

deduce that when s > 1
4
k(k + 1)(k + 4), one has Js(X;F) � X4s−K+ε. This

conclusion may be compared with the mean value estimate underlying [11,
Theorem 1.3], which delivers a similar conclusion for s > (3

8
+ o(1))k3 log k.

The constraint on s imposed in our present work is therefore stronger by a
factor (3

2
+ o(1)) log k.

3. Lower bounds

In order to put into perspective the upper bounds recorded in Theorem 2.1,
and such corollaries as Theorem 1.1, we consider in this section the topic of
lower bounds for the mean value Js(X;F). Here one must consider integral
solutions to the system of equations (2.1) of two types. On the one hand, there
are typical solutions whose contribution to Js(X;F) we expect to be given by
a product of local densities. On the other hand, there are integral solutions
lying on special subvarieties, the most obvious of which are diagonal linear
spaces such as that given by xi = yi (1 6 i 6 s). It transpires that when
d > 1, there are special subvarieties not of the latter type which potentially
make the dominant contribution to Js(X;F). In order to describe the latter
subvarieties, we must introduce some further notation.

Let r and d be natural numbers, and consider a system of translation-dilation
invariant polynomials F = (F1, . . . , Fr), where Fj(z) ∈ Z[z1, . . . , zd] (1 6 j 6
r). Let δ be a natural number with 1 6 δ 6 d − 1, and consider indices il
(1 6 l 6 δ) satisfying

1 6 i1 < i2 < . . . < iδ 6 d. (3.1)
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We say that the system of polynomials G = (G1, . . . , Gr), where Gj(w) ∈
Z[w1, . . . , wδ] (1 6 j 6 r), is the orthogonal projection of F determined by i
when

Gj(w) = Fj(ζ) (1 6 j 6 r),

in which ζm = wl when m = il for some index l with 1 6 l 6 δ, and ζm = 0
when m 6∈ {i1, . . . , iδ}. The system G remains translation-dilation invariant,
and may be replaced by an equivalent reduced system G′. We describe G′ as
a reduced orthogonal projection of F determined by i. Finally, write πδ(F) for
the set of all reduced orthogonal projections of F determined by sets of indices
{i1, . . . , iδ} satisfying (3.1). We remark that these orthogonal projections are
in fact a special case of the more general projections introduced in the preamble
to Theorem 1.7. In this section we consider only the former projections, since
they are simpler to analyse and in any case deliver all of the salient features
of importance for our discussion of lower bounds.

In order to facilitate our subsequent discussion, we define the polynomial
ψ(x;α) = ψ(x;α;F) by putting

ψ(x;α;F) =
r∑
i=1

αiFi(x), (3.2)

and then define the associated exponential sum f(α) = f(α;X;F) by

f(α;X;F) =
∑

16x6X

e(ψ(x;α;F)). (3.3)

By orthogonality, we then have

Js(X;F) =

∮
|f(α;X;F)|2s dα. (3.4)

We are now equipped to describe our most general lower bound for the mean
value Js(X;F).

Theorem 3.1. Let F be a reduced translation-dilation invariant system of
polynomials having dimension d and weight K. Then for each natural number
s, one has

Js(X;F)� Xsd +X2sd−K +
d−1∑
δ=1

Xd−δ max
G∈πδ(F)

Js(X;G).

Proof. We consider first typical solutions of the system (2.1) not constrained
to lie on special subvarieties. Suppose that F has rank r, and write kj for the
degree of Fj for 1 6 j 6 r. There exists a positive number A, depending at
most on d, k and the coefficients of F, such that whenever 1 6 x 6 X, one has

|Fj(x)| 6 AXkj (1 6 j 6 r).

Consequently, when 1 6 x,y 6 X, one sees that for 1 6 j 6 r the integer
s∑
l=1

(Fj(xl)− Fj(yl))
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lies in the interval [−2sAXkj , 2sAXkj ]. We therefore deduce by means of
orthogonality in combination with the triangle inequality and (3.4) that

[X]2sd =
∑

|hj |62sAXkj

(16j6r)

∮
|f(α;X;F)|2se(−α1h1 − . . .− αrhr) dα

�
( ∏

16j6r

Xkj
)∮
|f(α;X;F)|2s dα = XKJs(X;F).

Thus we conclude that
Js(X;F)� X2sd−K . (3.5)

Next, by considering the diagonal solutions of (2.1) with 1 6 x,y 6 X and
xj = yj (1 6 j 6 s), we obtain the lower bound

Js(X;F)� Xsd. (3.6)

We now come to consider the solutions of the system (2.1) lying on certain
additional special subvarieties. We assert that when G is a reduced translation-
dilation invariant system with dimension e > 2, then for every system H lying
in πe−1(G), one has

Js(X;G)� XJs(X;H). (3.7)

In view of (3.5) and (3.6), the lower bound claimed in the statement of Theorem
3.1 then follows by induction.

Let G = (G1, . . . , Gu) be a reduced translation-dilation invariant system of
dimension e > 1, and consider a system H ∈ πe−1(G). The system H is the
orthogonal projection of G determined by some (e−1)-tuple i = (i1, . . . , ie−1).
By relabelling variables, if necessary, we may suppose that i = (1, 2, . . . , e−1).
Consider now the system of equations

s∑
i=1

(G(xi)−G(yi)) = 0. (3.8)

Let a be an integer with 1 6 a 6 X, set a = (0, . . . , 0, a), and consider the
effect of the translation (xi,yi) 7−→ (xi− a,yi− a). In view of the translation
invariance of the system (3.8) that is a consequence of the discussion leading
to (2.4), one finds that whenever the system of equations

s∑
i=1

(G(xi − a)−G(yi − a)) = 0 (3.9)

is satisfied, then so too is the system (3.8). If we substitute xie = yie = a (1 6
i 6 s), then we find that G(xi − a) = H(xi), where H is the aforementioned
orthogonal projection of G determined by (1, 2, . . . , e − 1). Write H′ for any
reduced system equivalent to H. Then we conclude that whenever z,w is a
solution of the system

s∑
i=1

(H′(zi)−H′(wi)) = 0,
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then the system (3.9) has the solution

xi = (zi, a) and yi = (wi, a) (1 6 i 6 s).

The latter is also a solution of (3.8), and hence

Js(X;G) >
∑

16a6X

Js(X;H′) =
∑

16a6X

Js(X;H) = [X]Js(X;H).

This confirms the lower bound (3.7), and in view of our earlier discussion the
proof of the theorem is complete. �

We turn now to discuss lower bounds for Js(X;F) for the most basic exam-
ples of reduced translation-dilation invariant systems F.

(a) The classical system of Vinogradov. We recall the system

F = (zk, zk−1, . . . , z)

of dimension 1, rank k, degree k and weight 1
2
k(k + 1). In this situation, the

conclusion of Theorem 3.1 delivers the familiar lower bound

Js(X;F)� Xs +X2s− 1
2
k(k+1).

(b) The system of Parsell. We next return to the situation with d > 2 and the
system Fd = (zi11 z

i2
2 . . . z

id
d : 1 6 |i| 6 k). On writing

Kδ =
k∑
l=1

l

(
l + δ − 1

l

)
, (3.10)

we see that this system has weight Kd, and it follows from Theorem 3.1 that

Js(X;Fd)� Xsd +X2sd−Kd +
d−1∑
δ=1

Xd−δJs(X;Fδ)

� Xsd +
d∑
δ=1

Xd−δ(X2sδ−Kδ +Xsδ).

We therefore conclude that

Js(X;Fd)� Xsd +
d∑
j=1

X(2s−1)j+d−Kj ,

and this establishes Theorem 1.2.

Let us consider the strength of the upper bound presented in Theorem 1.1
in the light of the lower bound just established. Define r and K as in (2.6)
and (2.7). When s is large enough, we expect that Js(X;Fd)� X2sd−K , and
indeed this estimate is a consequence of Theorem 1.5 when s > r(k + 1) + 1.
We show here that this lower bound on s cannot be relaxed substantially when
k is large in terms of d.
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Theorem 3.2. Suppose that s, k and d are natural numbers, and that ν is a
real number with 2d/k < ν < 1. Then there is a positive number η = η(d, k)
such that, whenever

s 6
d

2d+ 2
(1− ν)r(k + 1), (3.11)

one has Js,k,d(X)� X2sd−K+η.

Proof. Recall the notation introduced in (3.10), and consider a natural number
s satisfying (3.11). We observe that as a consequence of Theorem 1.2, one has

Js,k,d(X)

X2sd−Kd
� X2s(d−1)+1−Kd−1

X2sd−Kd
= XKd−Kd−1+1−2s. (3.12)

From equations (1.2) and (1.3), one has

Kd =
dk

d+ 1

(
k + d

d

)
=

d

d+ 1
(r + 1)k

and

Kd−1 =
(d− 1)k

d

(
k + d− 1

d− 1

)
=
d− 1

k + d
(r + 1)k.

Consequently, one finds that

Kd −Kd−1 + 1− 2s >
d

d+ 1
(r + 1)k − d− 1

k + d
(r + 1)k + 1

− d

d+ 1
(1− ν)r(k + 1)

>
d

d+ 1
(r + 1)k

(
1− d2 − 1

d(k + d)
− (1− ν)(1 + 1/k)

)
.

Then provided that ν > 2d/k, one may infer that

Kd −Kd−1 + 1− 2s >
d

d+ 1
(r + 1)k

(2d− 1

k
− d

k + d
+

1

d(k + d)

)
> 0.

One concludes therefore that there exists a positive number η such that

Js,k,d(X)� X2sd−Kd+η.

This completes the proof of the theorem. �

Recall that Theorem 1.1 asserts that Js,k,d(X) � X2sd−Kd+ε whenever s >
r(k+1). Consequently, for any positive number ν < 1, it follows from Theorem
3.2 that when k is large enough in terms of ν and d, such a conclusion is
impossible if the constraint on s is replaced by

s >
d

2d+ 2
(1− ν)r(k + 1).

Thus, the conclusion of Theorem 1.1 is at worst a factor of essentially 2 + 2/d
away from the best possible conclusion of its type.

When d is large and k is small the situation changes. Here, whenever

s 6
k

2(k + d)

( d

d+ 1

)
(r + 1)k,
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we find that

Kd −Kd−1 + 1− 2s >
d

d+ 1
(r + 1)k

(
1− d2 − 1

d(k + d)
− k

k + d

)
> 0.

When d is large enough in terms of k, one finds that

k

2(k + d)

( d

d+ 1

)
(r + 1)k = r(k + 1)

( k2

2(k + 1)d

)
(1 +O(k/d)).

Thus, when ν > 0 is small enough in terms of d and k, the lower bound
Js,k,d(X)� X2sd−Kd+η holds for a positive number η provided that

s 6
(1− ν)k2

2(k + 1)d
r(k + 1).

In this situation, the conclusion of Theorem 1.1 is at worst a factor of essentially
2(1 + 1/k)d/k away from the best possible conclusion of its type.

(c) The system of Arkhipov, Karatsuba and Chubarikov. Here we consider the
situation with d > 2 and l > 1 in which F is given by (2.8). On recalling
(2.10), the weight of such a system with dimension d is Kd = 1

2
dl(l + 1)d,

whilst the corresponding weight of such a system with dimension d − 1 is
Kd−1 = 1

2
(d−1)l(l+1)d−1. As in the argument leading to (3.12), an application

of Theorem 3.1 in this instance delivers the lower bound

Js(X;F)

X2sd−Kd
� XKd−Kd−1+1−2s.

From (2.10) one finds when

s 6 1
4
dl(l + 1)d(1− (1− 1/d)(l + 1)−1)

one has

Kd −Kd−1 + 1− 2s > 1 + 1
2
dl(l + 1)d(1− (1− 1/d)(l + 1)−1)− 2s > 0.

Observe that

1
4
dl(l + 1)d(1− (1− 1/d)(l + 1)−1) =

1 +O(1/(dl))

4(1 + 1/l)
(dl + 1)((l + 1)d − 1).

Thus, when ν > 0 is small enough in terms of d and l, one finds that the lower
bound Js(X;F)� X2sd−K+η holds for a positive number η provided that

s 6
(1− ν)

4(1 + 1/l)
(dl + 1)((l + 1)d − 1).

In this situation, the conclusion of Corollary 2.2 is at worst a factor of essen-
tially 4(1 + 1/l) away from the best possible conclusion of its type. By way of
comparison, the work of Arkhipov, Karatsuba and Chubarikov [2] would miss
the best possible conclusion by a factor of order d log l.
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4. Preliminary manoeuvres

Our purpose in this section is to describe further notation and establish such
preliminary estimates as are required to initiate the efficient congruencing pro-
cedure, with the ultimate objective of proving Theorem 2.1. With this aim in
mind, let F be a reduced translation-dilation invariant system of polynomials
having dimension d, rank r, degree k and weight K. Since the conclusion of
Theorem 2.1 follows from linear algebra when k = 1, there is no loss of general-
ity in supposing that k > 2. We consider the system F to be fixed throughout,
and consequently suppress mention of F by abbreviating Js(X;F) to Js(X),
with similar conventions in other notation as appropriate. We recall the nota-
tion introduced in (3.2) and (3.3), and note the consequence of orthogonality
recorded in (3.4).

Our argument involves the investigation of systems of congruences, the sin-
gular solutions of which must be isolated for special treatment. We pause
at this point to introduce a special Jacobian determinant that facilitates this
treatment. First, given a polynomial G(z) ∈ Z[z1, . . . , zd], we write ∂iG to
denote the partial derivative of G with respect to the ith variable, so that

∂iG(z) =
∂G

∂zi
(z1, . . . , zd).

We now consider a function σ : {1, . . . , r} → {1, . . . , d}, and define the associ-
ated Jacobian determinant ∆r(x;σ) = ∆(x1, . . . ,xr;σ) by

∆(x1, . . . ,xr;σ) = det
(
∂σ(i)Fj(xi)

)
16i,j6r

. (4.1)

We seek a choice for σ having the property that ∆r(x;σ) is not identically
zero as a polynomial in x. With this goal in mind, we consider the monomials
occurring in F and ∆r(x;σ), and introduce an ordering on the exponents
associated with these monomials in order to ease discussion. When t is a
natural number, and a,b ∈ (N ∪ {0})t, we say that a is less than b in colex
order when there exists an index i with 1 6 i 6 t such that ai < bi, and
further aj = bj for j > i. In such a situation, we write a ≺ b, and we
write a 4 b when a = b or a ≺ b. Next, given a ∈ (N ∪ {0})t, we write
xa for the monomial xa11 x

a2
2 . . . xatt . The monomials xa may now be ordered

according to the colexicographical order of their indices. Notice that when xi =
(xi1, . . . , xid), then the monomial xc1

1 . . .xcr
r has smaller degree than xd1

1 . . .xdr
r

in colex if and only if there exists an index i for which ci ≺ di, and further
cj = dj for j > i.

Lemma 4.1. There exists a function σ : {1, . . . , r} → {1, . . . , d} such that
∆r(x;σ) is non-zero as a polynomial in x1, . . . ,xr.

Proof. We begin by interpreting the polynomials Fj(z) in terms of the colex
ordering of monomials. Recall that k = max

16j6r
deg(Fj). Write

A = {a ∈ (N ∪ {0})d : 1 6 a1 + . . .+ ad 6 k},
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so that the polynomials Fj(z) are necessarily linear combinations of the mono-
mials za with a ∈ A . We put A = card(A ), and label indices in such a
manner that

A = {a1, . . . , aA},
with a1 ≺ a2 ≺ . . . ≺ aA the colex ordering of the elements of A . Thus, for
1 6 j 6 r, there exists an integral A-tuple cj, which we consider as a row
vector, having the property that

Fj(z) = cj · (za1 , . . . , zaA)T .

Since F1, . . . , Fr are linearly independent, the matrix

C = (cj)16j6r

must have full rank, and hence there exists an invertible r× r matrix M with
rational coefficients having the property that the product R = MC is a full
rank matrix in inverted reduced row-echelon form. By the latter we mean that
if R is the matrix

(ρl,m) 16l6r
16m6A

,

then the corresponding matrix

(ρr+1−l,A+1−m) 16l6r
16m6A

is in conventional reduced row echelon form. We define the r-tuple of polyno-
mials (G1, . . . , Gr) by putting

(G1, . . . , Gr)
T = M (F1, . . . , Fr)

T = MC (za1 , . . . , zaA)T

= R(za1 , . . . , zaA)T . (4.2)

Let zbj denote the leading monomial of Gj(z) in colex, for 1 6 j 6 r. Since
R is in inverted reduced row echelon form, we have

b1 ≺ b2 ≺ . . . ≺ br. (4.3)

We now define the function σ : {1, . . . , r} → {1, . . . , d} as follows. When
1 6 i 6 r, we take σ(i) to be the smallest index h with the property that
bih > 0.

It remains to verify that with the choice of the function σ just made, the
polynomial ∆r(x;σ) is non-zero. Let ei denote the d-dimensional vector whose
ith coordinate is equal to 1, all of whose remaining coordinates are 0. When
1 6 n 6 r, define the Jacobian determinant Dn(x;σ) = D(x1, . . . ,xn;σ) by

D(x1, . . . ,xn;σ) = det(∂σ(i)Gj(xi))16i,j6n.

We proceed by induction to show that for 1 6 n 6 r, the determinant Dn(x;σ)
may be expanded in the shape

Dn(x;σ) = D(1)
n (x;σ) +D(2)

n (x;σ), (4.4)

where

D(1)
n (x;σ) =

n∏
j=1

bj,σ(j)x
bj−eσ(j)
j , (4.5)
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and D
(2)
n (x;σ) is of smaller degree in colex than D

(1)
n (x;σ). Notice that the

definition of σ implies that b1,σ(1) . . . bn,σ(n) 6= 0. Then having established the
inductive hypothesis for n = r, it follows that Dr(x;σ) contains the monomial

r∏
j=1

x
bj−eσ(j)
j

with a non-zero coefficient, and hence Dr(x;σ) must be a non-zero polynomial.
In this way, the proof of the inductive hypothesis will facilitate the proof of
the lemma.

When n = 1, we have Dn(x;σ) = ∂σ(1)G1(x1), and hence it follows at once
that (4.4) holds with

D
(1)
1 (x;σ) = b1,σ(1)x

b1−eσ(1)
1 ,

for some polynomial D
(2)
1 (x;σ) of degree smaller in colex than x

b1−eσ(1)
1 . Thus

the inductive hypothesis holds with n = 1.

Suppose next that the inductive hypothesis has been established already for
1 6 n < u. When 1 6 i, j 6 u, define the polynomials θij by putting

θij =

{
bu,σ(u)x

bu−eσ(u)
u , when i = j = u,

0, when (i, j) 6= (u, u).

Then the determinant Du(x;σ) has the expansion

Du(x;σ) = θuuDu−1(x;σ) + det(∂σ(i)Gj(xi)− θij)16i,j6u.

On making use of the inductive hypothesis with n = u− 1 in order to expand
Du−1(x;σ), we deduce that

Du(x;σ) = θuu(D
(1)
u−1(x;σ) +D

(2)
u−1(x;σ)) + det(∂σ(i)Gj(xi)− θij)16i,j6u

= D(1)
u (x;σ) +D(0)

u (x;σ), (4.6)

where

D(0)
u (x;σ) = bu,σ(u)x

bu−eσ(u)
u D

(2)
u−1(x;σ) + det(∂σ(i)Gj(xi)− θij)16i,j6u. (4.7)

Every term on the right hand side of (4.7) may be expanded as a linear com-
bination of terms of the shape

x
h1−eσ(1)
1 . . .x

hu−eσ(u)
u , (4.8)

in which for some permutation π : {1, . . . , u} → {1, . . . , u}, there exist d-
tuples b′1, . . . ,b

′
u with (b′1, . . . ,b

′
u) 4 (b1, . . . ,bu) and b′l 4 bl (1 6 l 6 u),

and having the property that

(h1, . . . ,hu) = (b′π(1), . . . ,b
′
π(u)).

Moreover, in the event that π is the identity permutation, then one has
(b′1, . . . ,b

′
u) ≺ (b1, . . . ,bu).

If π is the identity permutation, then

(h1, . . . ,hu) = (b′1, . . . ,b
′
u) ≺ (b1, . . . ,bu).
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Since the (strict) colex ordering between tuples is not reversed on component-
wise addition, a modicum of thought confirms that

(h1 − eσ(1), . . . ,hu − eσ(u)) ≺ (b1 − eσ(1), . . . ,bu − eσ(u)). (4.9)

Unfortunately, our notation is somewhat opaque, and so it may be worth-
while to spell out the details underlying this deduction. Since (h1, . . . ,hu) ≺
(b1, . . . ,bu), there exists an index l with the property that hl ≺ bl, and fur-
ther hj = bj for j > l. But then there exists an index m = m(l) with the
property that hlm < blm, and further hlj = blj for j > m. On recalling that
the definition of the function σ implies that blj = 0 for j < σ(l), we deduce
that m(l) > σ(l). Thus we find that hl − eσ(l) ≺ bl − eσ(l), and further that
hj − eσ(j) = bj − eσ(j) for j > l. We therefore conclude that (4.9) holds, as we
had previously asserted.

Suppose next that π is not the identity permutation, and let i be maximal
with π(i) 6= i. Then for j > i one has j = π(j), and hence

hj = b′π(j) = b′j 4 bj.

Since j = π(j) for j > i, it follows that i > π(i), and hence from (4.3) we see
that

hi = b′π(i) 4 bπ(i) ≺ bi.

It follows that (h1, . . . ,hu) ≺ (b1, . . . ,bu), so that as above one finds that the
relation (4.9) holds also in the situation that π is not the identity permutation.

In view of (4.8), it follows that D
(0)
u (x;σ) is of smaller degree in colex than

the polynomial D
(1)
u (x;σ) defined by means of (4.5). We therefore deduce

from (4.6) that the relation (4.4) holds with n = u, and with D
(2)
u (x;σ) of

smaller degree in colex than D
(1)
u (x;σ). We have consequently established the

inductive hypothesis with n = u, and hence the inductive hypothesis holds for
1 6 n 6 r. In particular, the determinant Dr(x;σ) is a non-zero polynomial.

We now reverse course in order to relate the non-vanishing of Dr(x;σ) to
the non-vanishing of ∆r(x;σ). For each l with 1 6 l 6 d, it follows from (4.2)
that one has the identity

(∂lG1, . . . , ∂lGr)
T = M (∂lF1, . . . , ∂lFr)

T ,

whence

(∂σ(i)Gj(xi))
T
16i,j6r = M (∂σ(i)Fj(xi))

T
16i,j6r.

Consequently, one has

Dr(x;σ) = (det M )∆r(x;σ).

But the matrix M is invertible, so that det M 6= 0. Our conclusion that
Dr(x;σ) is a non-zero polynomial therefore forces us to conclude that ∆r(x;σ)
is also a non-zero polynomial. This completes the proof of the lemma. �

Henceforth, we fix our choice of the function σ : {1, . . . , r} → {1, . . . , d}
so that ∆r(x;σ) is a non-zero polynomial, as permitted by the conclusion of
Lemma 4.1, and we write ∆r(x) for ∆r(x;σ).
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We next turn to the task of introducing notation with which to describe
the mean values central to our methods, as well as exponents with which to
bound these mean values. We refer to the exponent λs = λs(F) as permissible
when, for each positive number ε, and for any real number X sufficiently large
in terms of s, F and ε, one has Js(X;F) � Xλs+ε. Define λ∗s to be the
infimum of the set of exponents λs permissible for s and F, and then put
ηs = λ∗s− 2sd+K. Thus, whenever X is sufficiently large in terms of s, F and
ε, one has

Js(X)� Xλ∗s+ε, (4.10)

where

λ∗s = 2sd−K + ηs. (4.11)

Note that, in view of the lower bound supplied by Theorem 3.1 and the trivial
estimate Js(X) 6 X2sd, one has 0 6 ηs 6 K for s ∈ N.

We take δ to be a small positive number to be fixed shortly. Let u be a
natural number with u > k, put s0 = ur, and fix a natural number s with
s > s0. Our goal is to show that λ∗s+r = 2(s + r)d − K, whence ηs+r = 0.
From this and the definition of λ∗s+r, it follows that there exists a sequence of
natural numbers (Xn)∞n=1, tending to infinity, with the property that

Js+r(Xn) > X
λ∗s+r−δ
n (n ∈ N). (4.12)

In view of (4.10), when Xn is sufficiently large and Xδ2

n < Y 6 Xn, we also
have the corresponding upper bound

Js+r(Y ) < Y λ∗s+r+δ. (4.13)

Notice that since s > s0, the trivial inequality |f(α;X)| 6 Xd leads to the
upper bound

Js+r(X) 6 X2(s−s0)d

∮
|f(α;X)|2s0+2r dα = X2(s−s0)dJs0+r(X).

It follows that one has ηs+r 6 ηs0+r, and so we are free to restrict attention to
the special case s = s0. Finally, we take N to be a natural number sufficiently
large in terms of s and F. We then put

θ = N−1/2(r/s)N+2, (4.14)

and fix δ to be a positive number with δ < (Ns)−3N , so that δ is small compared
to θ. We now consider a fixed element X = Xn of the sequence (Xn), which
we may assume to be sufficiently large in terms of s, F, N and δ, and we put
M = Xθ. Thus, in particular, one has Xδ < M1/N .

Let p be a fixed prime number with M < p 6 2M to be chosen in due course.
That such a prime exists is a consequence of the Prime Number Theorem.
Recall the notation introduced in (3.2). When c is a non-negative integer, and
ξ ∈ Zd and α ∈ [0, 1)r, define

fc(α; ξ) =
∑

16x6X
x≡ξ (mod pc)

e(ψ(x;α)). (4.15)
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We need to equip ourselves with exponential sums of a type related to that de-
fined in (4.15), but possessing inherently non-singular structure. We introduce
the notion of well-conditioned r-tuples (x1, . . . ,xr) with xi ∈ Zd (1 6 i 6 r).
We denote by Ξc(ξ) the set of r-tuples ξ = (ξ1, . . . , ξr) ∈ (Zd)r, with

1 6 ξi 6 pc+1 and ξi ≡ ξ (mod pc) (1 6 i 6 r),

and satisfying the property that ∆(ξ1, . . . , ξr) 6≡ 0 (mod p(K−r)c+1). In addi-
tion, write Σr = {1,−1}r, and consider an element σ of Σr. Recalling the
definition (4.15), we then put

Fσ
c (α; ξ) =

∑
ξ∈Ξc(ξ)

r∏
i=1

fc+1(σiα; ξi). (4.16)

Next we introduce the two mean values that underly our arguments. When
a and b are non-negative integers, and σ, τ ∈ Σr, we define

Iσa,b(X; ξ,η) =

∮
|Fσ
a (α; ξ)2fb(α;η)2s| dα, (4.17)

and

Kσ,τ
a,b (X; ξ,η) =

∮
|Fσ
a (α; ξ)2Fτ

b (α;η)2u| dα. (4.18)

We then define

Ia,b(X) = max
16ξ6pa

max
16η6pb

max
σ∈Σr

Iσa,b(X; ξ,η), (4.19)

and

Ka,b(X) = max
16ξ6pa

max
16η6pb

max
σ,τ∈Σr

Kσ,τ
a,b (X; ξ,η). (4.20)

We stress that, although these mean values depend on our choice of p, this
dependence will shortly be rendered irrelevant when we fix our choice of p
once and for all. Consequently, we suppress mention of p in our notation.

Finally, following the simplifying notational device of [21, §3], we define the
normalised magnitude of the mean values Js+r(X) and Ka,b(X) as follows. We
define [[Js+r(X)]] by means of the relation

Js+r(X) = X2(s+r)d−K [[Js+r(X)]], (4.21)

and when 0 6 a < b, we define [[Ka,b(X)]] by means of the relation

Ka,b(X) = (X/Ma)2rd−K(X/M b)2sd[[Ka,b(X)]]. (4.22)

Note that in view of (4.11), the lower bound (4.12) implies that

[[Js+r(X)]] > Xηs+r−δ, (4.23)

while the upper bound (4.13) ensures that whenever Xδ2 < Y 6 X, then

[[Js+r(Y )]] < Y ηs+r+δ. (4.24)
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5. Auxiliary mean values

We collect together in this section several mean value estimates that facili-
tate our subsequent analysis. We begin by exploiting the translation-dilation
invariance of the system F so as to bound an analogue of Js(X) in which
variables are restricted to an arithmetic progression. This argument will be
familiar to those who work on such problems.

Lemma 5.1. Suppose that c is a non-negative integer with cθ 6 1. Then for
each natural number t, one has

max
16ξ6pc

∮
|fc(α; ξ)|2t dα�t Jt(X/M

c). (5.1)

Proof. Let ξ be an integral d-tuple with 1 6 ξ 6 pc. By orthogonality, it
follows from (4.15) that the integral on the left hand side of (5.1) is bounded
above by the number of integral solutions of the system

t∑
i=1

(F(pcyi + ξ)− F(pczi + ξ)) = 0, (5.2)

with 0 6 y, z 6 X/pc. The translation-dilation invariance of the system
F discussed in the context of (2.1) and (2.4) shows that y, z is an integral
solution of (5.2) if and only if

t∑
i=1

(F(yi)− F(zi)) = 0. (5.3)

But on recalling (3.3) and employing orthogonality again, we perceive that the
number of integral solutions of (5.3) with 0 6 y, z 6 X/pc is equal to∮

|1 + f(α;X/pc)|2t dα�t 1 +

∮
|f(α;X/pc)|2t dα.

Thus we obtain the upper bound∮
|fc(α; ξ)|2t dα� 1 + Jt(X/p

c).

Since the condition cθ 6 1 ensures that X/M c > 1, a consideration of diagonal
solutions ensures that Jt(X/M

c) > 1, and the conclusion of the lemma follows
on noting that Jt(X/p

c) 6 Jt(X/M
c). �

Singular solutions associated with the vanishing of ∆r(x) are difficult to
control, and so we prepare a lemma to bound their number. We first introduce
some additional notation. Let F be a field. We restrict attention to either
the field of rational numbers Q, or else the finite field of p elements Fp. The
coefficients of ∆r(x) embed into both of these fields. Suppose that A ⊆ F
is finite, and write A = card(A ). Let t be a natural number. We denote by
St(A ;F) the set of t-tuples (x1, . . . ,xt) ∈ (A d)t having the property that the
determinants ∆r(xj1 , . . . ,xjr) vanish for all r-tuples (j1, . . . , jr) with 1 6 j 6 t.
Before announcing our main estimate for card(St(A ;F)), we first recall a
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familiar lemma bounding the number of zeros of polynomials in many variables
(see [18, Lemma 2], for example).

Lemma 5.2. Let Υ ∈ F[y1, . . . , yu] be a non-trivial polynomial of total degree
κ. Then the number of solutions of the equation Υ(y1, . . . , yu) = 0 with y ∈ A u

is at most κAu−1.

Proof. We proceed inductively. When u = 1, the desired conclusion is a con-
sequence of Lagrange’s theorem. Suppose then that the conclusion of the
lemma has been established for 1 6 u < v, and let Ψ ∈ F[y1, . . . , yv] be
a non-trivial polynomial of total degree κ. By relabelling variables if nec-
essary, we may suppose that Ψ is explicit in yv. Let the degree of Ψ with
respect to yv be ω, and let the coefficient of yωv be Φ(y1, . . . , yv−1). Then Φ
is a non-trivial polynomial in v − 1 variables of degree at most κ − ω. By
the inductive hypothesis, the number of solutions of Φ(y1, . . . , yv−1) = 0 with
(y1, . . . , yv−1) ∈ A v−1 is at most (κ − ω)Av−2. Then the number of v-tuples
(y1, . . . , yv) ∈ A v satisfying Φ(y1, . . . , yv−1) = 0 is at most (κ−ω)Av−1. Mean-
while, when Φ(y1, . . . , yv−1) 6= 0 and Ψ(y1, . . . , yv) = 0, then yv satisfies a
non-trivial polynomial of degree ω determined by y1, . . . , yv−1. So there are
at most ωAv−1 solutions of Ψ(y) = 0 with y ∈ A v and Φ(y1, . . . , yv−1) 6= 0.
We conclude that the total number of solutions of Ψ(y) = 0 with y ∈ A v is
at most (κ − ω)Av−1 + ωAv−1 = κAv−1, and hence the inductive hypothesis
follows for u = v. The desired conclusion therefore follows by induction. �

Lemma 5.3. Suppose that ∆r(x) is not identically zero as a polynomial in F.
Then

card(St(A ;F))� At(d−1)+r−1.

Proof. The conclusion of the lemma is trivial when t < r, so we may as-
sume that t > r. We define a sequence of non-zero polynomials Di(x) =
Di(x1, . . . ,xi) (0 6 i 6 r) as follows. We begin by setting Dr(x) = ∆r(x).
Suppose then that for some l > 1 we have constructed the polynomials Di(x)

for l 6 i 6 r. Amongst the monomials xh1
1 . . .xhl

l occurring in Dl(x), let
bl denote the largest of the d-tuples hl in colex. It follows that there exist
polynomials Dl−1(x) and Rl(x) having the property that

Dl(x1, . . . ,xl) = Dl−1(x1, . . . ,xl−1)xbl
l + Rl(x1, . . . ,xl). (5.4)

We may suppose that Dl−1(x) is non-zero, and that every monomial xh1
1 . . .xhl

l

occurring in Rl(x) satisfies hl ≺ bl. In this way, we have defined polynomials
Di(x) for 0 6 i 6 r. Notice here that D0(x) is a non-zero element of F.

Consider an integer j with 1 6 j 6 r, and denote by Bj the set of all
j-element subsets of {1, 2, . . . , t}. We define Tj to be the set of t-tuples
(x1, . . . ,xt) ∈ (A d)t satisfying the property that (a) for each subset {l1, . . . , lj}
in Bj, one has Dj(xl1 , . . . ,xlj) = 0, and (b) whenever i < j, there exists a sub-
set {m1, . . . ,mi} in Bi such that Di(xm1 , . . . ,xmi) 6= 0. A moment of reflection
reveals that St(A ;F) is the union of T1,T2, . . . ,Tr.

We next seek to bound card(Tj) for each integer j with 1 6 j 6 r. Consider
a t-tuple (x1, . . . ,xt) ∈ Tj. There exists a subset {m1, . . . ,mj−1} in Bj−1
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with Dj−1(xm1 , . . . ,xmj−1
) 6= 0 having the property that for each index m with

1 6 m 6 t for which m 6∈ {m1, . . . ,mj−1}, one has Dj(xm1 , . . . ,xmj−1
,xm) = 0.

In view of the relation (5.4), the latter equation implies that the d-tuple xm
satisfies

Dj−1(xm1 , . . . ,xmj−1
)xbj

m + Rj(xm1 , . . . ,xmj−1
,xm) = 0, (5.5)

in which the second term on the left hand side is of smaller degree in xm in
colex than the first term. Notice that since Dj−1(xm1 , . . . ,xmj−1

) 6= 0, then in
particular the equation (5.5) is non-trivial as a polynomial equation in xm. In
this way, we deduce from Lemma 5.2 that for each index m with 1 6 m 6 t for
which m 6∈ {m1, . . . ,mj−1}, the number of d-tuples xm ∈ A d satisfying (5.5)
is at most

(bj1 + . . .+ bjd)A
d−1 6 (k − 1)Ad−1.

The total number of choices of xm ∈ A d for all such indices m is therefore
at most ((k − 1)Ad−1)t−(j−1). The number of choices for (xm1 , . . . ,xmj−1

) ∈
(A d)j−1, meanwhile, is at most Ad(j−1). Since a trivial estimate confirms that
card(Bj−1) 6 tj−1, we deduce that

card(Tj) 6 tj−1((k − 1)Ad−1)t−j+1(Ad)j−1 � At(d−1)+j−1.

Combining the contributions of T1, . . . ,Tr, therefore, we conclude that

card(St(A ;F)) =
r∑
j=1

card(Tj)�
r∑
j=1

At(d−1)+j−1 � At(d−1)+r−1.

This completes the proof of the lemma. �

We are now equipped to initiate the iterative procedure. It is at this point
that we fix our choice for the prime number p.

Lemma 5.4. There exists a prime number p with M < p 6 2M for which
Js+r(X)�M2sdI0,1(X).

Proof. The mean value Js+r(X) counts the number of integral solutions of the
system

2(s+r)∑
i=1

(−1)iF(xi) = 0, (5.6)

with 1 6 x 6 X. Let T0 denote the number of such solutions in which

∆(xi1 , . . . ,xir) = 0 (5.7)

for all indices il (1 6 l 6 r) satisfying

1 6 i 6 2(s+ r). (5.8)

Also, let T1 denote the corresponding number of solutions in which (5.7) fails
to hold for some index i satisfying (5.8). Then Js+r(X) = T0 + T1.

We first consider T0. Put A = {1, 2, . . . , [X]} and S = S2s+2r(A ;Q).
Then on recalling the discussion in the preamble to the statement of Lemma
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5.2, we see that whenever x is counted by T0, one has x ∈ S . It therefore
follows from Lemma 5.3 that

T0 6 card(S2s+2r(A ;Q))� X2(s+r)(d−1)+r−1.

Note that our hypotheses ensure that s > rk. Then since

K =
r∑
j=1

kj 6 rk,

we find that s > K. In view of the lower bound on Js+r(X) available from
Theorem 3.1, we deduce that

T0 � X2(s+r)d−2s−1 � X2(s+r)d−K−1 � X−1Js+r(X). (5.9)

We next turn to the solutions counted by T1. We begin by examining the
determinant ∆r(z). On recalling (4.1), we see that the (j, i)-th entry of the
matrix associated with the determinant ∆r(z) has degree at most kj − 1. As
a polynomial in z, therefore, we see that the degree of ∆r(z) satisfies

deg ∆r(z) 6
r∑
j=1

(kj − 1) = K − r.

The coefficients of the monomial entries of ∆r(z) depend at most on F, and
so for sufficiently large values of X, the sum of the absolute values of these
coefficients is bounded above by X. Thus we see that

max
16z6X

|∆r(z)| 6 XK .

Let P denote any set of [K/θ] + 1 distinct prime numbers with M < p 6 2M .
Such a set exists by the Prime Number Theorem, since we are at liberty to
assume X to be large enough in terms of K and θ. It follows that∏

p∈P

p > MK/θ = XK > max
16z6X

|∆r(z)|.

Consequently, whenever 1 6 z 6 X and ∆r(z) 6= 0, then there exists a prime
p ∈P for which p - ∆r(z). In particular, for each solution x of (5.6) counted
by T1, there exists an index i satisfying (5.8) and a prime p ∈ P for which
∆r(xi1 , . . . ,xir) 6≡ 0 (mod p).

Let I denote the set of all indices i satisfying (5.8), and define σ = σ(i) by
putting σ(i) = ((−1)i1 , . . . , (−1)ir). Also, put

l(i) = (−1)i1 + . . .+ (−1)ir , m(i) = 1
2
(r + l(i)), n(i) = 1

2
(r − l(i)).

Then on recalling the definition (4.16) and considering the underlying Dio-
phantine equations, we see that

T1 �
∑
p∈P

∑
i∈I

∮
F
σ(i)
0 (α;0)f(α;X)s+r−mf(−α;X)s+r−n dα.

An application of Schwarz’s inequality therefore reveals that

T1 � max
p∈P

(
max
σ∈Σr

∮
|Fσ

0 (α;0)2f(α;X)2s| dα
)1/2(∮

|f(α;X)|2s+2r dα
)1/2

.
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Recalling now (3.4) and (4.19), we deduce that there exists a prime number p
with M < p 6 2M for which

T1 � (I0,0(X))1/2(Js+r(X))1/2.

By reference to (5.9), we therefore arrive at the upper bound

Js+r(X) = T0 + T1 � X−1Js+r(X) + (I0,0(X))1/2(Js+r(X))1/2,

whence
Js+r(X)� 1 + I0,0(X)� I0,0(X). (5.10)

Our final step is to split the summation in the definition (4.15) of f0(α;0)
into arithmetic progressions modulo p. Thus we obtain

f0(α;0) =
∑

16ξ6p

f1(α; ξ),

and so it follows from Hölder’s inequality that

|f0(α;0)|2s 6 (pd)2s−1
∑

16ξ6p

|f1(α; ξ)|2s.

In this way we deduce from (4.17) and (4.19) that

I0,0(X)� (Md)2s max
16ξ6p

max
σ∈Σr

∮
|Fσ

0 (α;0)2f1(α; ξ)2s| dα�M2sdI0,1(X).

The proof of the lemma is made complete by substituting this last estimate
into (5.10). �

This is the point at which we fix the prime number p, once and for all, in
such a way that the estimate Js+r(X) � M2sdI0,1(X) holds. That such a
choice is possible is guaranteed by the conclusion of Lemma 5.4.

6. Auxiliary congruences

The main thrust of our argument begins with a discussion of the congruences
that play a critical role in what follows. We first introduce some additional
notation. When σ ∈ Σr, denote by Bσ

a,b(m; ξ,η) the set of solutions of the
system of congruences

r∑
i=1

σiFj(zi − η) ≡ mj (mod pkjb) (1 6 j 6 r), (6.1)

with
1 6 z 6 pkb, zi ≡ ξ (mod pa) (1 6 i 6 r) (6.2)

and
∆(z1, . . . , zr) 6≡ 0 (mod p(K−r)a+1). (6.3)

The non-singularity condition (6.3) is awkward to handle directly, and so we
simplify it using the condition (6.2) by means of the following lemma.

Lemma 6.1. One has the polynomial identity

∆(tz1 + ξ, . . . , tzr + ξ) = tK−r∆(z1, . . . , zr).
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Proof. It suffices to establish the claimed identity in the special case t = 1,
since the homogeneity of the polynomials Fj(x) ensures that

∆(tz1, . . . , tzr) =
( r∏
j=1

tkj−1
)

∆(z1, . . . , zr) = tK−r∆(z1, . . . , zr).

Consider then the situation with t = 1, and recall the relation (2.3). By the
chain rule, we find that for 1 6 l 6 d one has

∂F

∂xl
(x + ξ) =

∂

∂xl
(F(x + ξ)) =

∂

∂xl
(C(ξ)F(x)) = C(ξ)∂lF(x).

The definition (4.1) of ∆r(x) therefore delivers the relation

∆(x1 + ξ, . . . ,xr + ξ) = det(∂σ(i)Fj(xi + ξ))16i,j6r

= det
(
C(ξ)(∂σ(i)Fj(xi))16i,j6r

)
= (detC(ξ))∆(x1, . . . ,xr).

But C(ξ) is lower unitriangular, so that detC(ξ) = 1. We therefore conclude
that

∆(x1 + ξ, . . . ,xr + ξ) = ∆(x1, . . . ,xr),

and in view of our earlier discussion, the proof of the lemma is complete. �

We also require an analogue of Hensel’s lemma in order to lift solutions of
congruences to progressively higher moduli. A suitable version of this lifting
process is implicit in the next lemma.

Lemma 6.2. Let f1, . . . , ft be polynomials in Z[x1, . . . , xt] with respective de-
grees κ1, . . . , κt, and write

J(f ;x) = det

(
∂fj
∂xi

(x)

)
16i,j6t

.

When $ is a prime number, and l is a natural number, let N (f ;$l) denote
the number of solutions of the simultaneous congruences

fj(x1, . . . , xt) ≡ 0 (mod $l) (1 6 j 6 t),

with 1 6 xi 6 $l (1 6 i 6 t) and (J(f ;x), $) = 1. Then N (f ;$l) 6 κ1 . . . κt.

Proof. This is [19, Theorem 1]. �

We are now equipped to establish the basic estimate for the number of
solutions of the congruences (6.1) comprising Bσ

a,b(m; ξ,η).

Lemma 6.3. Suppose that a and b are non-negative integers with b > a. Then

max
16ξ6pa

max
16η6pb

max
σ∈Σr

card(Bσ
a,b(m; ξ,η)) 6 k1 . . . krp

(kb−a)rd−K(b−a).
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Proof. Consider fixed integers a and b with 0 6 a < b, a fixed r-tuple σ ∈ Σr,
and fixed integral d-tuples ξ and η with 1 6 ξ 6 pa and 1 6 η 6 pb. Denote
by D1(n) the set of solutions of the system of congruences

r∑
i=1

σiF(zi − η) ≡ n (mod pkb), (6.4)

with 1 6 z 6 pkb and

zi ≡ ξi (mod pa+1) for some ξ ∈ Ξa(ξ) (1 6 i 6 r). (6.5)

Given a fixed integral r-tuple m, the number of r-tuples n with 1 6 n 6 pkb,
for which nj ≡ mj (mod pkjb) (1 6 j 6 r), is equal to

r∏
j=1

p(k−kj)b = (pb)rk−K .

Then it follows from (6.1) that

card(Bσ
a,b(m; ξ,η)) =

∑
16n16pkb

n1≡m1 (mod pk1b)

. . .
∑

16nr6pkb

nr≡mr (mod pkrb)

card(D1(n))

6 (pb)rk−K max
16n6pkb

card(D1(n)). (6.6)

We next rewrite each variable zi in the shape zi = payi + ξ. Notice that
the hypothesis that zi ≡ ξi (mod pa+1) for some ξ ∈ Ξa(ξ), recorded in (6.5),
implies that ξi = pavi + ξ for some integral d-tuple vi, and further that

∆(ξ1, . . . , ξr) 6≡ 0 (mod p(K−r)a+1).

But as a consequence of Lemma 6.1, one then has

p(K−r)a∆(v1, . . . ,vr) = ∆(ξ1, . . . , ξr) 6≡ 0 (mod p(K−r)a+1),

whence

∆(v1, . . . ,vr) 6≡ 0 (mod p).

However, for 1 6 i 6 r one has

pavi + ξ = ξi ≡ zi = payi + ξ (mod pa+1),

so that yi ≡ vi (mod p), and hence

∆(y1, . . . ,yr) ≡ ∆(v1, . . . ,vr) 6≡ 0 (mod p).

With the substitution zi = payi + ξ in (6.4), therefore, we deduce that the set
of solutions D1(n) is in bijective correspondence with the set of solutions of
the system of congruences

r∑
i=1

σiF(payi + ξ − η) ≡ n (mod pkb), (6.7)

with 1 6 y 6 pkb−a and ∆r(y) 6≡ 0 (mod p).
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Let y = w be any solution of the system (6.7), if indeed such a solution
exists. Then it follows that all other solutions y satisfy the system of congru-
ences

r∑
i=1

σiF(payi + ξ − η) ≡
r∑
i=1

σiF(pawi + ξ − η) (mod pkb). (6.8)

The translation invariance formula (2.3) implies that

F(x) = C(ξ)−1(F(x + ξ)− c0(ξ)),

in which the matrix C(ξ) has determinant 1. It follows that the system of
congruences (6.8) is equivalent to the new system

r∑
i=1

σiF(payi) ≡
r∑
i=1

σiF(pawi) (mod pkb).

By homogeneity, moreover, this new system is in turn equivalent to

r∑
i=1

σiFj(yi) ≡
r∑
i=1

σiFj(wi) (mod pkb−kja) (1 6 j 6 r).

Next, we write D2(u) for the set of solutions of the system of congruences

r∑
i=1

σiFj(yi) ≡ uj (mod pkb−kja) (1 6 j 6 r),

with 1 6 y 6 pkb−a and ∆r(y) 6≡ 0 (mod p). Then it follows from our discus-
sion thus far that

card(D1(n)) 6 max
16u6pkb−a

card(D2(u)). (6.9)

Denote by D3(v) the set of solutions of the system of congruences

r∑
i=1

σiF(yi) ≡ v (mod pkb−a), (6.10)

with 1 6 y 6 pkb−a and ∆r(y) 6≡ 0 (mod p). Then we have

card(D2(u)) 6
∑

v1≡u1 (mod pkb−k1a)

16v16pkb−a

. . .
∑

vr≡ur (mod pkb−kra)

16vr6pkb−a

card(D3(v))

6 (pa)K−r max
16v6pkb−a

card(D3(v)).

Combining this estimate with (6.9) and (6.6), we derive the upper bound

card(Bσ
a,b(m; ξ,η)) 6 (pb)rk−K(pa)K−r max

16v6pkb−a
card(D3(v)). (6.11)

It is at this point that we prepare to apply Lemma 6.2. For 1 6 i 6 r, we
consider a fixed choice for the d − 1 coordinates yij with j 6= σ(i). We then
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define the polynomials

fj(y1,σ(1), . . . , yr,σ(r)) =
r∑
i=1

σiFj(yi)− vj (1 6 j 6 r).

Consider the solutions y of the system (6.10) lying in D3(v). For 1 6 i 6 r,
there are at most pkb−a possible choices for each coordinate yij with j 6= σ(i).
Write ỹ = (y1,σ(1), . . . , yr,σ(r)). Then in the notation of the statement of Lemma
6.2, one has

J(f ; ỹ) = det(∂σ(i)Fj(yi))16i,j6r = ∆r(y) 6≡ 0 (mod p).

Thus we may apply Lemma 6.2 to show that the number of solutions

y1,σ(1), . . . , yr,σ(r)

of the system of congruences

fj(y1,σ(1), . . . , yr,σ(r)) ≡ 0 (mod pkb−a) (1 6 j 6 r),

with 1 6 yi,σ(i) 6 pkb−a (1 6 i 6 r), is at most k1 . . . kr. In this way, we
conclude that

card(D3(v)) 6
∑

16y1j6pkb−a

16j6d
j 6=σ(1)

. . .
∑

16yrj6pkb−a

16j6d
j 6=σ(r)

k1 . . . kr

= k1 . . . kr(p
kb−a)r(d−1).

Substituting this estimate into (6.11), we arrive at the upper bound

card(Bσ
a,b(m; ξ,η)) 6 k1 . . . kr(p

b)rk−K(pa)K−r(pkb−a)r(d−1),

and the conclusion of the lemma follows at once. �

7. The conditioning process

Our next step involves extracting from the mean value Iσa,b(X; ξ,η) associ-
ated mean values conditioned so as to avoid singular solutions of an underlying
system of congruences. Although motivated by the corresponding treatment
for the classical Vinogradov system in [21, §5], the less digestible singularity
condition of the present work demands some modification.

Lemma 7.1. Let a and b be integers with b > a > 0. Then one has

Ia,b(X)� Ka,b(X) +M2s(d−1)+r−1Ia,b+1(X).

Proof. Consider fixed integral d-tuples ξ and η with 1 6 ξ 6 pa and 1 6 η 6
pb, and an r-tuple σ ∈ Σr. Then on considering the underlying Diophantine
system, one finds from (4.17) that Iσa,b(X; ξ,η) counts the number of integral
solutions of the system

r∑
i=1

σi(F(xi)− F(yi)) =
s∑
l=1

(F(vl)− F(vs+l)), (7.1)
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with

1 6 x,y,v 6 X, vl ≡ η (mod pb) (1 6 l 6 2s),

and satisfying the property that there exist

(ξ1, . . . , ξr) ∈ Ξa(ξ) and (ζ1, . . . , ζr) ∈ Ξa(ξ)

for which

xi ≡ ξi (mod pa+1) and yi ≡ ζi (mod pa+1) (1 6 i 6 r).

Let T1 denote the number of integral solutions x,y,v of the system (7.1),
counted by Iσa,b(X; ξ,η), satisfying the condition that for all r-tuples (l1, . . . , lr)
with

1 6 l 6 2s, (7.2)

one has

∆(vl1 , . . . ,vlr) ≡ 0 (mod p(K−r)b+1).

Also, let T2 denote the corresponding number of solutions satisfying the con-
dition that for some r-tuple l satisfying (7.2), one has

∆(vl1 , . . . ,vlr) 6≡ 0 (mod p(K−r)b+1). (7.3)

Then we have

Iσa,b(X; ξ,η) 6 T1 + T2. (7.4)

We consider first the solutions counted by T1. Suppose that x,y,v is a
solution counted by T1. For each index l with 1 6 l 6 2s, we may rewrite
vl in the shape vl = pbul + η, for some integral d-tuple ul. Given an r-tuple
(l1, . . . , lr) satisfying (7.2), it follows from Lemma 6.1 that

(pb)K−r∆(ul1 , . . . ,ulr) = ∆(pbul1 + η, . . . , pbulr + η)

= ∆(vl1 , . . . ,vlr) ≡ 0 (mod p(K−r)b+1),

whence

∆(ul1 , . . . ,ulr) ≡ 0 (mod p).

Write A = {1, 2, . . . , p} and F = Z/pZ. Then it follows that u ≡ ν (mod p)
for some ν ∈ S2s(A ;F). Define Hb to be the set of 2s-tuples (η1, . . . ,η2s)
with 1 6 ηl 6 pb+1 (1 6 l 6 2s) satisfying the property that (η1, . . . ,η2s) =
(η + pbν1, . . . ,η + pbν2s) for some (ν1, . . . ,ν2s) ∈ S2s(A ;F). Then we have
(v1, . . . ,v2s) ≡ (η1, . . . ,η2s) (mod pb+1) for some (η1, . . . ,η2s) ∈Hb.

On considering the underlying Diophantine system, we deduce that

T1 �
∑

(η1,...,η2s)∈Hb

∮
|Fσ
a (α; ξ)|2|fb+1(α;η1) . . . fb+1(α;η2s)| dα.

In view of the elementary inequality

|z1 . . . zn| 6 |z1|n + . . .+ |zn|n,
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we find from (4.17) that

T1 �
∑

(η1,...,η2s)∈Hb

2s∑
i=1

∮
|Fσ
a (α; ξ)2fb+1(α;ηi)

2s| dα

� card(Hb) max
16η06pb+1

Iσa,b+1(X; ξ,η0).

But as a consequence of Lemma 5.3, one has

card(Hb) = card(S2s(A ;F))� p2s(d−1)+r−1.

Thus we conclude from (4.19) that

T1 �M2s(d−1)+r−1Ia,b+1(X). (7.5)

Next we turn our attention to the solutions x,y,v counted by T2. We may
suppose that for some r-tuple l satisfying (7.2), one has the congruence (7.3).
We define τi for 1 6 i 6 r by taking τi = 1 when 1 6 li 6 s, and τi = −1
when s + 1 6 li 6 2s. Notice that since vl ≡ η (mod pb) (1 6 l 6 2s),
the condition (7.3) implies that (vl1 , . . . ,vlr) ≡ (ν l1 , . . . ,ν lr) (mod pb+1) for
some (ν l1 , . . . ,ν lr) ∈ Ξb(η). Thus, on considering the underlying Diophantine
system, we obtain the upper bound

T2 �
∑
τ∈Σr

∮
|Fσ
a (α; ξ)2Fτ

b (α;η)fb(α;η)2s−r| dα.

On recalling that s = ur, an application of Hölder’s inequality reveals from
(4.17) and (4.18) that for some τ ∈ Σr, one has

T2 �
(∮
|Fσ
a (α; ξ)2Fτ

b (α;η)2u| dα
)1/(2u)

×
(∮
|Fσ
a (α; ξ)2fb(α;η)2s| dα

)1−1/(2u)

= (Kσ,τ
a,b (X; ξ,η))1/(2u)(Iσa,b(X; ξ,η))1−1/(2u).

We therefore conclude via (4.19) and (4.20) that

T2 � (Ka,b(X))1/(2u)(Ia,b(X))1−1/(2u). (7.6)

On combining (7.5) and (7.6) with (7.4), we deduce that

Ia,b(X)�M2s(d−1)+r−1Ia,b+1(X) + (Ka,b(X))1/(2u)(Ia,b(X))1−1/(2u),

whence
Ia,b(X)� Ka,b(X) +M2s(d−1)+r−1Ia,b+1(X).

This completes the proof of the lemma. �

Repeated application of Lemma 7.1 shows that whenever a, b and H are
non-negative integers with b > a > 0, then

Ia,b(X)�
H−1∑
h=0

(Mh)2s(d−1)+r−1Ka,b+h(X) + (MH)2s(d−1)+r−1Ia,b+H(X). (7.7)

We next show that Ia,b+H(X) is negligible for H large enough.



38 S. T. PARSELL, S. M. PRENDIVILLE, AND T. D. WOOLEY

Lemma 7.2. Let a, b and H be non-negative integers with

0 < b− a 6 H 6 θ−1 − b.
Then one has

(MH)2s(d−1)+r−1Ia,b+H(X)�M−H/2(X/M b)2sd(X/Ma)2rd−K+ηs+r .

Proof. On considering the underlying system of Diophantine equations, we find
from (4.17) that when 1 6 ξ 6 pa and 1 6 η 6 pb+H , and σ ∈ Σr, one has

Iσa,b+H(X; ξ,η) 6
∮
|fa(α; ξ)2rfb+H(α;η)2s| dα.

An application of Hölder’s inequality in combination with Lemma 5.1 therefore
yields the estimate

Iσa,b+H(X; ξ,η) 6
(∮
|fa(α; ξ)|2s+2r dα

)r/(s+r)
×
(∮
|fb+H(α;η)|2s+2r dα

)s/(s+r)
� (Js+r(2X/M

a))r/(s+r)(Js+r(2X/M
b+H))s/(s+r).

Consequently, on recalling (4.21) and (4.24), we obtain the upper bound

Ia,b+H(X)�
(
(X/Ma)r/(s+r)(X/M b+H)s/(s+r)

)2(s+r)d−K+ηs+r+δ

� Xδ(X/Ma)2rd−K+ηs+r(X/M b)2sdΥ, (7.8)

where
Υ = (M b−a+H)Ks/(s+r)M−2sdH .

But when H > b− a, one has

H(2s(d− 1) + r − 1)+(b− a+H)Ks/(s+ r)− 2sdH

6 H(r − 1− 2s) + 2HKs/(s+ r).

On observing that s > rk > K, and hence (s + r)2 > K(rk + r) > Kr, one
finds that the expression 2Hs− 2HKs/(s+ r) achieves its minimum value for
s > rk when s = rk. Hence we deduce that

H(2s(d− 1) + r − 1)+(b− a+H)Ks/(s+ r)− 2sdH

6 −H +H(r − 2rk) + 2HKrk/(rk + r)

6 −H +H(r − 2rk/(k + 1)) 6 −H.
In this way, we see that for k > 2, one has

(MH)2s(d−1)+r−1Υ 6M−H ,

whence
Xδ(MH)2s(d−1)+r−1Υ 6M−H/2.

The conclusion of the lemma follows on substituting this estimate into (7.8).
�

Combining Lemma 7.2 with the upper bound (7.7), we conclude as follows.
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Lemma 7.3. Let a and b be integers with 0 6 a < b, and put H = b − a.
Suppose that b + H 6 θ−1. Then there exists an integer h with 0 6 h < H
having the property that

Ia,b(X)� (Mh)2s(d−1)+r−1Ka,b+h(X)

+M−H/2(X/M b)2sd(X/Ma)2rd−K+ηs+r .

The special case of Lemma 7.3 with a = 0 and b = 1 yields a refinement of
Lemma 5.4 more easily utilised in what is to come.

Lemma 7.4. One has Js+r(X)�M2sdK0,1(X).

Proof. When a = 0 and b = 1, one has b−a = 1. Thus we deduce from Lemma
7.3 that

I0,1(X)� K0,1(X) +M−1/2(X/M)2sdX2rd−K+ηs+r .

Since we may suppose that M > X4δ, it follows from Lemma 5.4 that

Js+r(X)�M2sdI0,1(X)�M2sdK0,1(X) +X2(s+r)d−K+ηs+r−2δ.

But in view of (4.21) and (4.23), one has

Js+r(X)� X2(s+r)d−K+ηs+r−δ,

and thus we reach the upper bound

Js+r(X)�M2sdK0,1(X) +X−δJs+r(X).

The conclusion of the lemma follows on disentangling this inequality. �

8. The efficient congruencing step

The mean value Ka,b(X) contains the powerful congruence conditions which
drive the iterative process. In this section we convert these conditions into a
form suited for further iteration.

Lemma 8.1. Suppose that a and b are integers with 0 6 a < b 6 θ−1. Then
one has

Ka,b(X)�M2(kb−a)rd−K(b−a)(Js+r(2X/M
b))1−r/s(Ib,kb(X))r/s.

Proof. Consider fixed r-tuples ξ and η with 1 6 ξ 6 pa and 1 6 η 6 pb, and
r-tuples σ, τ ∈ Σr. Then on considering the underlying Diophantine system,
one finds that Kσ,τ

a,b (X; ξ,η) counts the number of integral solutions of the
system

r∑
i=1

σi(F(xi)− F(yi)) =
u∑
l=1

r∑
m=1

τm(F(vlm)− F(wlm)), (8.1)

in which, for some r-tuples ζ,ν ∈ Ξa(ξ), one has

1 6 x,y 6 X, x ≡ ζ (mod pa+1) and y ≡ ν (mod pa+1),

and for 1 6 l 6 u, for some µl,θl ∈ Ξb(η), one has

1 6 vl,wl 6 X, vl ≡ µl (mod pb+1) and wl ≡ θl (mod pb+1).
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The translation invariance formula (2.3) implies that the system (8.1) is equiv-
alent to the new system of equations

r∑
i=1

σi(F(xi− η)−F(yi− η)) =
u∑
l=1

r∑
m=1

τm(F(vlm− η)−F(wlm− η)). (8.2)

In any solution x,y,v,w counted by Kσ,τ
a,b (X; ξ,η), one has vl ≡ wl ≡

η (mod pb) (1 6 l 6 u). We therefore deduce from (8.2) that

r∑
i=1

σiFj(xi − η) ≡
r∑
i=1

σiFj(yi − η) (mod pkjb) (1 6 j 6 r). (8.3)

We also have x ≡ y ≡ ξ (mod pa),

∆r(x) 6≡ 0 (mod p(K−r)a+1) and ∆r(y) 6≡ 0 (mod p(K−r)a+1).

Recall the notation introduced prior to the statement of Lemma 6.1, and
write

Gσ
a,b(α; ξ,η;m) =

∑
ζ∈Bσ

a,b(m;ξ,η)

r∏
i=1

fkb(σiα; ζi).

On considering the underlying Diophantine system, we deduce from (8.1) and
(8.3) that

Kσ,τ
a,b (X; ξ,η) =

pk1b∑
m1=1

. . .

pkrb∑
mr=1

∮
|Gσ

a,b(α; ξ,η;m)2Fτ
b (α;η)2u| dα. (8.4)

By applying Cauchy’s inequality in combination with the estimate supplied by
Lemma 6.3, we have

|Gσ
a,b(α; ξ,η;m)|2 6 card(Bσ

a,b(m; ξ,η))
∑

ζ∈Bσ
a,b(m;ξ,η)

r∏
i=1

|fkb(α; ζi)|2

�M (kb−a)rd−K(b−a)
∑

ζ∈Bσ
a,b(m;ξ,η)

r∏
i=1

|fkb(α; ζi)|2.

Substituting this relation back into (8.4) and considering the underlying Dio-
phantine system, we find that

Kσ,τ
a,b (X; ξ,η)

�M (kb−a)rd−K(b−a)
∑

16ζ6pkb

ζ≡ξ (mod pa)

∮ ( r∏
i=1

|fkb(α; ζi)|2
)
|Fτ
b (α;η)|2u dα. (8.5)
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Observe next that by Hölder’s inequality,∑
16ζ6pkb

ζ≡ξ (mod pa)

r∏
i=1

|fkb(α; ζi)|2 =

( ∑
16ζ6pkb

ζ≡ξ (mod pa)

|fkb(α; ζ)|2
)r

6 (pkb−a)(r−1)d
∑

16ζ6pkb

ζ≡ξ (mod pa)

|fkb(α; ζ)|2r.

Then (8.5) delivers the upper bound

Kσ,τ
a,b (X; ξ,η)�M2(kb−a)rd−K(b−a) max

16ζ6pkb

∮
|fkb(α; ζ)2rFτ

b (α;η)2u| dα. (8.6)

Another application of Hölder’s inequality yields the bound∮
|fkb(α; ζ)2rFτ

b (α;η)2u| dα 6 U
1−r/s
1 U

r/s
2 ,

where

U1 =

∮
|Fτ
b (α;η)|2u+2 dα

and

U2 =

∮
|Fτ
b (α;η)2fkb(α; ζ)2s| dα.

On considering the underlying Diophantine system, it follows from Lemma 5.1
that

U1 6
∮
|fb(α;η)|2s+2r dα� Js+r(2X/M

b),

whilst from (4.17) we have U2 = Iτb,kb(X;η, ζ). Thus we conclude that∮
|fkb(α; ζ)2rFτ

b (α;η)2u| dα� (Js+r(2X/M
b))1−r/s(Ib,kb(X))r/s.

On substituting this estimate into (8.6), the conclusion of the lemma follows.
�

We conclude this section by extracting two simplified bounds that may be
conveniently deployed in our iteration.

Lemma 8.2. Suppose that a and b are integers with 0 6 a < b 6 θ−1. Then

[[Ka,b(X)]]� Xηs+r+δ(M b−a)K .

Proof. Consider fixed d-tuples ξ and η with 1 6 ξ 6 pa and 1 6 η 6 pb, and
r-tuples σ, τ ∈ Σr. Considering the underlying Diophantine system and then
applying Hölder’s inequality, we obtain

Kσ,τ
a,b (X; ξ,η) 6

∮
|fa(α; ξ)2rfb(α;η)2s| dα

6
(∮
|fa(α; ξ)|2s+2r dα

)r/(s+r)(∮
|fb(α;η)|2s+2r dα

)s/(s+r)
.
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Next applying Lemma 5.1, we deduce that

Ka,b(X)� (Js+r(2X/M
a))r/(s+r)(Js+r(2X/M

b))s/(s+r),

whence by (4.22) we arrive at the upper bound

[[Ka,b(X)]]� Xδ((X/Ma)r/(s+r)(X/M b)s/(s+r))2(s+r)d−K+ηs+r

(X/M b)2sd(X/Ma)2rd−K

� Xηs+r+δ(M b−a)Ks/(s+r).

The conclusion of the lemma follows. �

The basic iterative relation follows by applying Lemma 7.3 in combination
with Lemma 8.1.

Lemma 8.3. Suppose that a and b are integers with 0 6 a < b 6 1
2
(kθ)−1,

and put H = (k− 1)b. Then there exists an integer h, with 0 6 h < H, having
the property that

[[Ka,b(X)]]�XδM−(2s−r+1)hr/s(X/M b)ηs+r(1−r/s)[[Kb,kb+h(X)]]r/s

+M−rH/(3s)(X/M b)ηs+r .

Proof. We deduce from Lemma 8.1 via (4.22) that

[[Ka,b(X)]]� (M b)2sd(Ma)2rd−KM2(kb−a)rd−K(b−a)T
1−r/s
1 T

r/s
2 , (8.7)

where

T1 =
Js+r(2X/M

b)

X2(s+r)d−K and T2 =
Ib,kb(X)

X2(s+r)d−K .

But
T1 � (M−b)2(s+r)d−K(X/M b)ηs+r+δ. (8.8)

Also, on putting H = (k − 1)b, we see that

kb+H = (2k − 1)b < θ−1.

Then it follows from Lemma 7.3 that there exists an integer h with 0 6 h < H
having the property that

T2 �
(Mh)2s(d−1)+r−1Kb,kb+h(X)

X2(s+r)d−K +
M−H/2(X/M b)ηs+r

(Mkb)2sd(M b)2rd−K .

Thus we see that
T2 � (M−kb)2sd(M−b)2rd−KΩ, (8.9)

where
Ω = M−(2s−r+1)h[[Kb,kb+h(X)]] +M−H/2(X/M b)ηs+r .

On substituting (8.8) and (8.9) into (8.7), we deduce that

[[Ka,b(X)]]�Mω(a,b)(X/M b)(1−r/s)(ηs+r+δ)Ωr/s,

where

ω(a, b) = 2sdb+ (2rd−K)a+ 2(kb− a)rd−K(b− a)

− (1− r/s)(2(s+ r)d−K)b− (2sdkb+ (2rd−K)b)r/s.
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A little effort reveals that ω(a, b) = 0, and thus we obtain

[[Ka,b(X)]]� (M−H/2)r/s(X/M b)ηs+r+δ(1−r/s)

+XδM−(2s−r+1)hr/s(X/M b)ηs+r(1−r/s)[[Kb,kb+h(X)]]r/s.

The conclusion of the lemma follows on noting that δ is assumed small enough
that (X/M b)δ(1−r/s) �M rH/(6s). �

9. The iterative process

Beginning with an application of Lemma 7.4, which bounds Js+r(X) in terms
of K0,1(X), we may apply Lemma 8.3 to bound Js+r(X) in terms of Ka,b(X)
for an increasing sequence of parameters a and b. Our goal in this section is
to manage this process, deriving useful information from the iterations. Our
first step is to extract from Lemma 8.3 a conclusion transparent enough to be
applied as the basic tool in each iterative step.

Lemma 9.1. Suppose that a and b are integers with 0 6 a < b 6 1
2
(kθ)−1.

Suppose in addition that there exist non-negative numbers ψ, c and γ, with
c 6 3(s/r)N , for which

Xηs+r(1+ψθ) � XcδM−γ[[Ka,b(X)]]. (9.1)

Then, for some non-negative integer h with h 6 (k − 1)b, one has

Xηs+r(1+ψ′θ) � Xc′δM−γ′ [[Ka′,b′(X)]],

where
ψ′ = (s/r)ψ + (s/r − 1)b, γ′ = (s/r)γ + (2s− r + 1)h,

c′ = (s/r)(c+ 1), a′ = b and b′ = kb+ h.

Proof. We are at liberty to assume that c 6 3(s/r)N and δ < (Ns)−3N , so we
have

cδ < 1
3
s−2N < θ/(3s),

and hence Xcδ < M1/(3s). In addition, one has M1/(3s) > Xδ. We therefore
deduce from Lemma 8.3 that there exists an integer h with 0 6 h < (k − 1)b
having the property that

[[Ka,b(X)]]�M−r/(3s)Xηs+r

+Xδ(X/M b)(1−r/s)ηs+r
(
M−(2s−r+1)h[[Kb,kb+h(X)]]

)r/s
.

On making use of the hypothesised bound (9.1), and employing in addition the
lower bound r > 2 to confirm that XcδM−r/(3s) � X−δ, we therefore obtain
the estimate

Xηs+r(1+ψθ) �X(c+1)δM−γ−(2s−r+1)rh/s(X/M b)(1−r/s)ηs+r [[Kb,kb+h(X)]]r/s

+ Xηs+r−δ,

whence

Xηs+r(r/s+(ψ+(1−r/s)b)θ) � X(c+1)δM−γ−(2s−r+1)rh/s[[Kb,kb+h(X)]]r/s.
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The desired conclusion now follows on raising left and right hand sides here to
the power s/r. �

Our final task is to analyse the growth of the parameters as the iteration
proceeds, since from this we are able to extract the conclusion of Theorem 2.1.

Lemma 9.2. Put s = rk. Then one has ηs+r = 0.

Proof. We may suppose that ηs+r > 0, for otherwise there is nothing to prove.
We begin by defining three sequences (an), (bn), (hn) of non-negative integers
for 0 6 n 6 N . We put a0 = 0 and b0 = 1. Then, when 0 6 n < N , we fix
any integer hn with 0 6 hn 6 (k − 1)bn, and then define

an+1 = bn and bn+1 = kbn + hn. (9.2)

We next define the auxiliary sequences (ψn), (cn), (γn) of non-negative real
numbers for 0 6 n 6 N by putting ψ0 = 0, c0 = 1, γ0 = 0. Then, for
0 6 n < N , we define

ψn+1 = (s/r)ψn + (s/r − 1)bn, (9.3)

cn+1 = (s/r)(cn + 1), (9.4)

γn+1 = (s/r)γn + (2s− r + 1)hn. (9.5)

It is apparent that γn is non-negative for n > 0, and an inductive argument
shows that for 0 6 n 6 N , one has

cn =
2s− r
s− r

(s/r)n − s

s− r
6
(

2 +
1

k − 1

)
(s/r)n 6 3(s/r)n.

We claim that a choice may be made for the sequence (hn) in such a manner
that for 0 6 n 6 N , one has

bn <
√
N(s/r)n (9.6)

and
Xηs+r(1+ψnθ) � XcnδM−γn [[Kan,bn(X)]]. (9.7)

When n = 0, the relation (9.6) holds by virtue of the definition of b0, and the
relation (9.7) holds as a consequence of (4.22), (4.23) and Lemma 7.4, since
the latter implies that

Xηs+r−δ < [[Js+r(X)]]� [[K0,1(X)]].

Before considering larger indices n, we conduct a preliminary analysis of the
recurrence relations (9.2)-(9.5). Observe that when n > 0, one has

γn+1 = (s/r)γn + (2s− r + 1)(bn+1 − kbn),

whence
γn+1 − (2s− r + 1)bn+1 = (s/r)(γn − (2s− r + 1)bn).

Then we deduce by induction that

γn = (2s− r + 1)bn + (s/r)n(γ0 − (2s− r + 1)b0)

= (2s− r + 1)(bn − (s/r)n). (9.8)



MULTIDIMENSIONAL WEYL SUMS 45

Suppose next that the desired conclusions (9.6) and (9.7) have been estab-
lished for the index n < N . Then from (9.6) and (4.14) one has kbnθ <
k(s/r)n−N−2 < 1

2
, whence bn <

1
2
(kθ)−1. By appealing to Lemma 9.1 we de-

duce from (9.7) that there exists a non-negative integer h, with h 6 (k− 1)bn,
for which one has the upper bound

Xηs+r(1+ψ′θ) � Xc′δM−γ′ [[Ka′,b′(X)]], (9.9)

where

a′ = bn = an+1, b′ = kbn + h, (9.10)

ψ′ = (s/r)ψn + (s/r − 1)bn = ψn+1,

c′ = (s/r)(cn + 1) = cn+1,

γ′ = (s/r)γn + (2s− r + 1)h. (9.11)

Suppose, if possible, that b′ >
√
N(s/r)n+1. The relations (9.8), (9.10) and

(9.11) then show that

γ′ = (s/r)(2s− r + 1)(bn − (s/r)n) + (2s− r + 1)(b′ − kbn)

= (2s− r + 1)(b′ − (s/r)n+1)

> (1− 1/
√
N)(2s− r + 1)b′. (9.12)

But b′ = kbn + h 6 (2k − 1)bn < θ−1, and so it follows from Lemma 8.2 that

[[Ka′,b′(X)]]� Xηs+r+δ(M b′)K .

On substituting this estimate together with (9.12) into (9.9), we obtain the
upper bound

Xηs+r(1+ψn+1θ) � Xηs+r+(cn+1+1)δ(M b′)K−(2s−r+1)(1−1/
√
N).

We recall that cn+1 6 3(s/r)n+1, so that X(cn+1+1)δ < M1/2. Also,

K − (1− 1/
√
N)(2s− r + 1) 6 rk − (2rk − r + 1) + 2s/

√
N < −1.

Thus we obtain

Xηs+r(1+ψn+1θ) � Xηs+rM1−b′ � Xηs+rM−1.

Since ψn+1 and θ are both positive, we are forced to conclude that ηs+r < 0,
contradicting our opening hypothesis. The assumption that b′ >

√
N(s/r)n+1

is therefore untenable, and so we must in fact have b′ <
√
N(s/r)n+1. We now

take hn to be the integer h at hand, so that b′ = bn+1 and γ′ = γn+1, and thus
we confirm the upper bounds (9.6) and (9.7) with n replaced by n+ 1.

We now collect together our various bounds on the parameters in question.
We have (9.6) and (9.7) for 0 6 n 6 N , and also the bounds cn 6 3(s/r)n and
γn > 0. Also, by induction one finds that bn > kn and

ψn+1 = kψn + (k − 1)bn > kψn + (k − 1)kn,
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whence ψn > n(k − 1)kn−1. Finally, one has bNθ < (r/s)2 < 1
2
, so that

bN < θ−1. By applying Lemma 8.2 in combination with (9.7), we therefore
obtain the estimate

Xηs+r(1+ψNθ) � Xηs+r+(cN+1)δ(M bN )K � Xηs+r+rk.

Making use again of the relation θ = N−1/2(r/s)N+2 from (4.14), we conclude
that

ηs+r 6
rk

ψNθ
6

√
Nrk(s/r)N+2

N(k − 1)kN−1
<

rk4

√
N
.

We may take N to be as large as necessary in terms of k and r, and thus
ηs+r can be made arbitrarily small. We are therefore forced to conclude that
ηs+r = 0, and this completes the proof of the lemma. �

The conclusion of Theorem 2.1 is an immediate consequence of Lemma 9.2,
for in view of (4.21) and (4.24) the latter shows that when s > r(k + 1), then
one has

Js(X;F)� X2sd−K+ε.

10. Estimates of Weyl type

The extraction of estimates analogous to that of Weyl is in general difficult,
owing to the complexity of the multidimensional situation. Although it would
be feasible, with extra space and care, to analyse directly the exponential sum
f(α;X;F) encoding quite general translation-dilation invariant systems F, we
have chosen here to instead restrict attention to the Weyl sums associated with
the system described in example (b) of §2. Such Weyl sums may be applied so
as to bound the apparently more general sums f(α;X;F) mentioned above, at
the cost of somewhat weaker estimates. Since our upper bounds for Js(X;F)
are essentially optimal with s = r(k+1), it transpires that the slight weakening
of the Weyl exponent does not impede the bulk of applications.

We stress then that throughout this section, until indicated otherwise, the
system F is understood to be defined by

F = (zi11 z
i2
2 . . . z

id
d : 1 6 |i| 6 k),

and the corresponding Weyl sum f(α;X;F) we abbreviate to f(α). We define
r and K as in (2.6) and (2.7). We must also consider the system F′ defined by

F′ = (zi11 z
i2
2 . . . z

id
d : 1 6 |i| 6 k − 1).

This system has rank

r′ =

(
k + d− 1

d

)
− 1,

and weight

K ′ =
d

d+ 1
(r′ + 1)(k − 1).

The hard work involved in estimating f(α) has been presented by the first
author in [9, §5], though here we take the opportunity to clarify one or two
issues.



MULTIDIMENSIONAL WEYL SUMS 47

Theorem 10.1. Fix an index j with 2 6 |j| 6 k, and put σ = (2r′k)−1. Let
α ∈ Rr, and suppose that a and q are integers with q > 1, (a, q) = 1 and
|qαj − a| 6 q−1. Then one has

|f(α)| � Xd+ε(q−1 +X−1 + qX−|j|)σ.

Proof. The conclusion of the theorem is essentially immediate from [9, Theo-
rem 5.1]. We apply Theorem 2.1 to show that when s = r′k, then one has

Js(X;F′)� X2sd−K′+∆,

with ∆ 6 ε. Since σ = 1/(2s), the upper bound for |f(α)| follows from the
aforementioned estimate [9, Theorem 5.1]. �

We add a few words of clarification to the proof of the latter conclusion
in order to serve our purposes in the proof of Theorem 10.2. The index j =
(j1, . . . , jd) contains at least one coordinate jl satisfying jl > 1. By relabelling
variables, if necessary, one may suppose that l = 1. At the top of page 24 of
[9], it is asserted that there is no loss of generality in supposing that j1 > 1, an
assertion that is made otiose given our relabelling of variables. However, it is
apparent that the argument of this proof may be reorganised so that relabelling
is unnecessary, with the central elements of the argument focused on the index
jl instead of j1. The only issue to stress is that the set M ⊆ [1, N ]∩Z prepared
at the end of the proof of [9, Theorem 5.1] now depends on l.

Our next estimate refines Theorem 10.1 so that many coefficients are ap-
proximated simultaneously with control over a common denominator. In this
context, when θ ∈ R, we define ‖θ‖ = min

y∈Z
|θ − y|.

Theorem 10.2. Let ν be a positive number, let A be a real number satisfying
1 6 A 6 Xd, and write Q = Xν(XdA−1)2r′k. Suppose that |f(α)| > A, and
that Q � X1−2δ for some δ > 0. Let l be an integer with 1 6 l 6 d. Then
for each index j = (j1, . . . , jd) with 2 6 |j| 6 k and jl > 1, there exist aj ∈ Z
and qj ∈ N with (aj, qj) = 1 and |qjαj − aj| 6 QXδ−|j|. Moreover, the least

common multiple q
(l)
0 of the numbers qj with 2 6 |j| 6 k and jl > 1 satisfies

q
(l)
0 � Q(logX)2r′k and

‖q(l)
0 αj‖ � Q2(logX)2r′kXδ−|j| (2 6 |j| 6 k, jl > 1).

Proof. We apply the argument of the proof of [9, Theorem 5.2]. Consider an
index j = (j1, . . . , jd) with 2 6 |j| 6 k, and let l be any integer with jl > 1.
It follows from Dirichlet’s Theorem that there exist coprime integers qj and aj
with

1 6 qj 6 Q−1X |j|−δ and |qjαj − aj| 6 QXδ−|j|.

Keeping in mind the discussion following the proof of Theorem 10.1, we may
apply the argument of the proof of [9, Theorem 5.2] to deduce from Theorem
10.1 that qj � Q(logX)2r′k � X1−δ. Now fix an integer x ∈ [1, X], and
suppose that there is an integer y ∈ [1, X] such that

‖(k!)kαj(x− y)‖ 6 X1−|j|
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for each index j with 2 6 |j| 6 k satisfying jl > 1. Then the argument of the
proof of [9, Theorem 5.2] following [9, equation (5.8)] shows that qj divides

(k!)kaj(x− y) for each of the latter indices j. Write q
(l)
0 for the least common

multiple of the integers qj with 2 6 |j| 6 k and jl > 1. Then the argument of
the proof of [9, Theorem 5.2] shows that

q
(l)
0 � Q(logX)2r′k. (10.1)

Note here that our hypothesis jl > 1 permits the relevant part of the argument
of [9, Theorem 5.1] to be applied successfully, reflecting the discussion above
following the proof of Theorem 10.1. In addition, for 2 6 |j| 6 k and jl > 1,
one has

‖q(l)
0 αj‖ 6 q

(l)
0 ‖qjαj‖ � Q(logX)2r′k(QXδ−|j|) = Q2(logX)2r′kXδ−|j|.

This completes the proof of the theorem. �

We remark that the statement of [9, Theorem 5.2] should be modified to
reflect the argument concluding the above proof, so that the conclusion of [9,
Theorem 5.2] asserts only that q0 � Qd(logP )2sd. This issue follows through
the work of [9] discussing Weyl sums. In particular, the conclusion of [9,
Theorem 1.2] should be modified to impose a condition of the shape σ−1 >
4
3
(d+ 1)rk log(rk).

The next result is established via a Baker-style “final coefficient lemma”
argument (see [3, Lemma 4.6]).

Theorem 10.3. Let k be an integer with k > 2, and let τ be a real number
with τ−1 > (2r′k + 1)(d + 1). Suppose that |f(α)| > A > Xd−τ+ν for some
ν > 0, and write Y = (XdA−1)k+ν. Then there are integers aj and q satisfying

(q, a) = 1, 1 6 q � Y and |qαj − aj| � Y X−|j| (1 6 |j| 6 k).

Proof. This is immediate from the argument of the proof of [9, Theorem 5.5].
Write W = X1−(d+1)τ . We put s = r′k and note that τ(2s + 1)(d + 1) < 1,
whence

(XdA−1)2s(d+1) � (Xτ−ν)2s(d+1) � X1−(d+1)τ−2s(d+1)ν = WX−2s(d+1)ν .

As in the proof of [9, Theorem 5.5], we may apply Theorem 10.2 to show that

for 1 6 l 6 d, there exist integers q
(l)
0 with the property that

1 6 q
(l)
0 � Xν(XdA−1)2r′k(logX)2r′k � W 1/(d+1)X−sν ,

and satisfying the condition that whenever 2 6 |j| 6 k and jl > 1, then

‖q(l)
0 αj‖ � X2ν(XdA−1)4r′k(logX)2r′kXδ−|j| � W 2/(d+1)Xδ−|j|.

We take q0 to be the least common multiple of q
(1)
0 , . . . , q

(d)
0 . In this way, we

deduce first that

1 6 q0 6 q
(1)
0 . . . q

(d)
0 � (W 1/(d+1)X−sν)d � W d/(d+1).
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Suppose next that 2 6 |j| 6 k. Then there is some index l for which jl > 1,
and we have

‖q0αj‖ 6
( ∏

16m6d
m 6=l

q
(m)
0

)
‖q(l)

0 αj‖ � (W 1/(d+1)X−sν)d−1W 2/(d+1)Xδ−|j|.

In this way, we find that whenever 2 6 |j| 6 k, then without any condition on
j1, . . . , jd, one has

‖q0αj‖ � WXδ−|j|.

An application of [9, Lemma 5.4] completes the proof of the theorem, just as
in the proof of [9, Theorem 5.5]. �

The conclusion of Theorem 1.3 follows at once from Theorem 10.3 as a
special case. It seems worthwhile at this point to extract from Theorem 10.3 a
conclusion that serves to estimate f(α;X;F) for general translation-dilation
invariant systems F.

Theorem 10.4. Let F be a reduced translation-dilation invariant system of
polynomials having dimension d, rank r and degree k. Define the exponent µ
by means of the relation

µ−1 =

(
2k

(
k + d− 1

d

)
− 2k + 1

)
(d+ 1).

Suppose that |f(α;X;F)| > A > Xd−µ+ν for some ν > 0. Write Y =
(XdA−1)k+ν. Then there are integers aj and q, satisfying

(q, a) = 1, 1 6 q � Y and |qαj − aj| � Y X−kj (1 6 j 6 r).

Proof. By assumption, the polynomials Fj(x) (1 6 j 6 r) are homogeneous,
and satisfy the translation-dilation invariance relation (2.3) for a suitable lower
unitriangular matrix C(ξ). Write F for the column vector (Fj(x))16j6r, and X
for the column vector (xi)16|i|6k, in which the entries are arranged in ascending
colex order. Finally, put

ρ =

(
k + d

d

)
− 1.

The monomials xi span the space generated by {F1, . . . , Fr}, and so one may
write F = AX, with A an r × ρ matrix having integer entries depending only
on the coefficients of F. The linear independence of the system F ensures that
there exists an invertible ρ × ρ matrix B, having rational entries depending
only on the coefficients of the system F, having the property that AB is an
r × ρ block matrix of the shape (O Ir), with O the r × (ρ − r) zero matrix,
and Ir the r × r identity matrix. Observe that B will have a block structure
which associates to Fj monomials xi with |i| = kj.

Suppose that |f(α;X;F)| > A > Xd−µ+ν , for some ν > 0. One has

f(α;X;F) =
∑

16x6X

e
( r∑
i=1

αiFi(x)
)

=
∑

16x6X

e
( ∑

16|j|6k

βjx
j
)
,
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wherein we have written β = ATα. Thus we have∣∣∣ ∑
16x6X

e
( ∑

16|j|6k

βjx
j
)∣∣∣ > A > Xd−µ+ν .

It follows from Theorem 10.3 that there exist integers cj and v, with (v, c) = 1,
satisfying

1 6 v � Y and |vβj − cj| � Y X−|j| (1 6 |j| 6 k). (10.2)

Now BTβ = (AB)Tα. Since AB = (O Ir), we see that

(0, . . . , 0, α1, . . . , αr)
T = BTβ, (10.3)

so that α1, . . . , αr are given by linear combinations of the real numbers βj
(1 6 |j| 6 k), with rational coefficients depending at most on the coefficients
of F.

Let Ω0 be the least natural number having the property that Ω0B has in-
tegral entries, and let Ω be the largest of the absolute values of the entries of
Ω0B. Then it follows from (10.2) and (10.3) that for 1 6 i 6 r, one has

‖Ω0vαi‖ 6
∑
|j|=ki

Ω‖vβj‖ � ρΩY X−ki .

Write q0 = vΩ0 and Z = ρΩY . Then we find that 1 6 q0 � Z and there
exist integers bi (1 6 i 6 r) such that |q0αi − bi| � ZX−ki (1 6 i 6 r). The
conclusion of the theorem follows on putting g = (q0,b), writing q = q0/g and
ai = bi/g (1 6 i 6 r), and noting that Z � Y . �

11. Asymptotic formulae associated with Diophantine equations

The mean value estimate supplied by Theorem 2.1 may be routinely com-
bined with estimates of Weyl type, explored in §10, so as to establish asymp-
totic formulae for the number of solutions of associated Diophantine systems.
Such consequences have been examined already in the literature, and so our
goal in this section is to sketch some conclusions, and outline the arguments
necessary for their proofs. In particular, we deliberately avoid going into detail
concerning proofs of these new results so as to avoid adding bulk to an already
lengthy memoir.

We begin by establishing an asymptotic formula for a general counting prob-
lem of which Theorem 1.4 is essentially a special case. Consider then a reduced
translation-dilation invariant system of polynomials F having dimension d,
rank r, degree k and weight K. Let s be a natural number, and consider fixed
non-zero integers cij for 1 6 i 6 r and 1 6 j 6 s. Finally, let Ns(X;F; c)
denote the number of integral solutions of the Diophantine system

s∑
j=1

cijFi(xj) = 0 (1 6 i 6 r), (11.1)

with 1 6 x 6 X. For the time being, it is convenient to abbreviate f(α;X;F)
to f(α).
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Theorem 11.1. Suppose that s > 2r(k + 1) + 1. Suppose further that cij
(1 6 i 6 r, 1 6 j 6 s) are non-zero integers, and that the system (11.1) has
both a non-singular real solution, and a non-singular p-adic solution for every
prime p. Then there exist positive constants D = D(s,F, c) and ν = ν(s,F, c)
such that

Ns(X;F; c) = DXsd−K +O(Xsd−K−ν).

Proof. We begin by defining a Hardy-Littlewood dissection. When 0 < θ 6 1,
let Mθ denote the union of the boxes

Mθ(q, a) = {α ∈ [0, 1)r : |qαi − ai| 6 Xθ−ki (1 6 i 6 r)},
with 1 6 q 6 Xθ, 0 6 a 6 q and (q, a) = 1. Complementing the major arcs
Mθ, we define the minor arcs mθ = [0, 1)r \Mθ. We claim that whenever
s > 2r(k + 1) + 1, then for a positive number δ = δ(s,F), one has∫

m1/3

|f(β)|s dβ � Xsd−K−δ. (11.2)

Define fj(α) to be f(c1jα1, . . . , crjαr). Then from the upper bound (11.2) it
follows by means of Hölder’s inequality that∫

m1/2

s∏
j=1

fj(α) dα 6
s∏
j=1

(∫
m1/2

|fj(α)|s dα
)1/s

� max
16j6s

∫
m1/3

|f(β)|s dβ � Xsd−K−δ. (11.3)

In order to confirm the estimate (11.2), observe first that∫
m1/3

|f(α)|s dα 6

(
sup

α∈m1/3

|f(α)|

)s−2r(k+1) ∮
|f(α)|2r(k+1) dα. (11.4)

By applying Theorem 2.1, one sees that∮
|f(α)|2r(k+1) dα� X2r(k+1)−K+ε. (11.5)

Next, define σ by means of the relation

σ−1 = 6(d+ 1)k

(
k + d− 1

d

)
.

If we hypothesise that |f(α)| > Xd−σ, then it follows from Theorem 10.4 that
there exist integers ai and q, with

1 6 q 6 X1/4, (q, a) = 1 and |qαi − ai| � X−ki+1/4 (1 6 i 6 r).

Then one must have α ∈M1/3, and thus we infer that

sup
α∈m1/3

|f(α)| 6 Xd−σ.

The desired estimate (11.2) follows on combining (11.4) and (11.5), provided
that we take δ < σ. In view of our earlier discussion, this confirms the estimate
(11.3).
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In order to estimate the contribution of the major arcs M1/2, we may follow
the argument of [9, §6]. We avoid providing many details here. We write

S(q, a) =
∑

16x6q

e
(
q−1

∑
16i6r

aiFi(x)
)

and

v(β) =

∫
[0,X]d

e
(∑

16i6r

βiFi(γ)
)

dγ,

and then put
V (α; q, a) = q−dS(q, a)v(α− a/q).

Define Vj(α) to be

V (c1jα1, . . . , crjαr; q, c1ja1, . . . , crjar)

when α ∈M1/2(q, a) ⊆M1/2, and otherwise put Vj(α) = 0. Then by adapting
the argument of [9, Lemma 5.3], one finds that

sup
α∈M1/2

|fj(α)− Vj(α)| � Xd−1/2. (11.6)

Since mes(M1/2)� X(r+1)/2−K , it follows via Hölder’s inequality that for some
positive number ν, one has∫

M1/2

s∏
j=1

fj(α) dα−
∫
M1/2

s∏
j=1

Vj(α) dα

� Xd−1/2 max
16j6s

∫
M1/2

|Vj(α)|s−1 dα +Xsd−K−ν .

Reversing course, one finds from (11.6) via Theorem 2.1 that whenever s >
2r(k + 1) + 1, then∫

M1/2

|Vj(α)|s−1 dα�
∫
M1/2

|fj(α)|s−1 dα +X(s−1)d−K−ν

6
∮
|fj(α)|s−1 dα +X(s−1)d−K−ν

� X(s−1)d−K+ε.

Thus we deduce that

Ns(X;F; c) =

∫
M1/2

s∏
j=1

fj(α) dα +

∫
m1/2

s∏
j=1

fj(α) dα

=

∫
M1/2

s∏
j=1

Vj(α) dα +O(Xsd−K−ν). (11.7)

The argument of the proof of [9, Theorem 6.2] is readily adapted to show
that ∫

M1/2

s∏
j=1

Vj(α) dα = JSXsd−K +O(Xsd−K−ν), (11.8)
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for some ν > 0, where

J =

∫
Rr

∫
[0,1]sd

e
( r∑
i=1

βi

s∑
j=1

cijFi(γj)
)

dγ dβ,

and

S =
∞∑
q=1

∑
16a6q
(q,a)=1

q−sd
s∏
j=1

S(q, c1ja1, . . . , crjar).

The absolute convergence of J and S follows via the methods of [9, §§5 and
6]. Here, the existence of non-singular real and p-adic solutions suffices to
guarantee that J > 0 and S > 0 (see [8] and [9] for the necessary ideas). On
substituting into (11.7) and (11.8), the desired conclusion follows. �

Note that, in order to count solutions of the system (11.1) with |x| 6 X,
one may merely add together the contributions from the 2d sectors accommo-
dating the various constellations of signs amongst the d coordinates, and thus
Theorem 1.4 is an immediate consequence of Theorem 11.1 corresponding to
the special translation-dilation invariant system

F = (xi : 1 6 |i| 6 k).

The special case of Theorem 11.1 in which s = 2r(k + 1) + 2 and cij = (−1)j

(1 6 j 6 s) delivers the following corollary.

Corollary 11.2. Suppose that t > r(k+1)+1. Then there are positive numbers
C = C(t,F) and δ = δ(t,F) such that

Jt(X;F) = CX2td−K +O(X2td−K−δ).

We remark that the positivity of the product of singular integral and singular
series, giving C > 0, is in this case a consequence of the lower bound provided
by Theorem 3.1. Note that Theorem 1.5 is a special case of Corollary 11.2,
corresponding to the same special choice of system as above.

We now move on to consider Theorem 1.6. Here we may follow the sketch
provided at the end of [9, §6]. We write

gj(α) =
∑
|x|6X

e
(∑
|i|=k

cjαix
i
)
.

Then it follows from Theorem 1.1 that whenever

s >

((
k + d

d

)
− 1

)
(k + 1),

then ∮
|gj(α)|2s dα� X2sd−L+ε.

The argument concluding [9, §6] then suffices to prove Theorem 1.6.

Finally, we consider the translation-dilation invariant system F, as in the
preamble to Theorem 11.1, with applications in additive combinatorics in
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mind. We therefore consider non-zero integers c1, . . . , cs satisfying the con-
dition c1 + . . . + cs = 0, and we investigate the solubility of the Diophantine
system

c1F(x1) + . . .+ csF(xs) = 0. (11.9)

We define projected and subset-sum solutions in a manner transparently anal-
ogous to that in the preamble to Theorem 1.7.

Theorem 11.3. Suppose that s > 2r(k + 1) + 1 and s > K + d2. Let ci (1 6
i 6 s) be non-zero integers satisfying c1 + . . .+cs = 0. Suppose further that the
system of equations (11.9) possesses non-singular real and p-adic solutions for
each prime number p. Let A ⊆ Zd∩[1, N ]d, and suppose that the only solutions
of the system (11.9) from A are either projected or subset-sum solutions. Then
one has

card(A )� Nd(log logN)−1/(s−1).

The conclusion of Theorem 1.7 is a special case of Theorem 11.3, as we now
confirm. For in the special circumstances relevant to the statement of Theorem
1.7 one has rk > K, and when k > 2 one has in addition

2r + 1 > 2

(
d+ k

k

)
− 1 > (d+ 2)(d+ 1)− 1 > d2.

Thus we find that the hypothesis s > 2r(k + 1) + 1 already ensures that
s > K + d2, and Theorem 1.7 consequently follows as a direct corollary of
Theorem 11.3.

The proof of Theorem 11.3 follows by adapting the methods of [11] to this
more general situation wherein d may exceed 2. The conclusion of Theorem
11.1 may be employed to show that when s > 2r(k+1)+1 and A is of suitable
linear uniformity with relative density δ, then the number N (A ) of solutions
of (11.9) with x ∈ A s satisfies

N (A )�c δ
sN sd−K .

We claim that the number N0(A ) of projected solutions is O(N s(d−1)+d2), and
that the number N1(A ) of subset-sum solutions is O(N sd−K−1/s). Granted
this claim, one finds that N (A ) > N0(A ) + N1(A ) provided that

N s(d−1)+d2 +N sd−K−1/s = o(δsN sd−K),

and this relation is satisfied whenever s > K + d2 and δ � (logN)−1, for
example. Under such circumstances, we conclude that the system (11.9) con-
tains solutions from A that are neither projected nor subset-sum solutions. In
particular, if the only solutions of (11.9) from A are either projected or subset-
sum solutions, then card(A )� Nd(logN)−1. On the other hand, if A is not
of suitable linear uniformity, then a concentration argument motivated by that
of Roth [12] and described in the proof of [11, Lemma 5.3] may be adapted
to this potentially higher dimensional setting to show that in the absence of
non-trivial solutions, a suitable sub-progression can be obtained with higher
relative density than that of A . By iterating this argument, one deduces that
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in circumstances wherein the only solutions of the system (11.9) from A are ei-
ther projected or subset-sum solutions, then card(A )� Nd(log logN)−1/(s−1).
We refer the reader to [11, §5] for details.

We have still to justify our earlier claim. We begin by counting the number
of projected solutions N0(A ). Let x = (x1, . . . ,xs) be any projected solution
counted by N0(A ). Then there exists a translate a ∈ Rd with the property that
spanR{x1−a, . . . ,xs−a} is a vector space of dimension m < d. There is no loss
of generality in taking a = x1, and then spanR{x1−a, . . . ,xs−a} has a basis of
the shape B = {xi1−x1, . . . ,xim−x1} for some indices 1 < i1 < . . . < im 6 s.
Since −N < xil − x1 < N for 1 6 l 6 m, one sees that the number of possible
choices for B is O((Nd)m). But there are trivially O(Nd) possible choices
for x1, and so we find that the number T of possible translated vector spaces
x1 + spanRB satisfies

T � Nd(Nd)m 6 Nd(Nd)d−1 = Nd2 .

The integral vectors lying in V = spanRB form an integral lattice of dimension
m, and hence volume considerations confirm that the number of vectors y ∈ Zd
such that −2N 6 y 6 2N and y ∈ V is at most O(Nm). Thus we deduce
that for each index i with 1 6 i 6 s, and each m < d, the number of possible
choices for xi − x1 is at most O(Nm). It follows that for fixed x1 and B, the
number of possible choices for x1, . . . ,xs is at most O(Nms). Then the total
number of possible projected solutions x1, . . . ,xs is

N0(A ) 6 NmsT � Nms+d2 6 N (d−1)s+d2 .

We turn next to the task of bounding N1(A ). The number of partitions
{1, . . . , s} = J1∪ . . .∪Jl, with l > 2 and the sets Jv disjoint and non-empty,
is plainly Os(1). Let N2(N ; J1, . . . ,Jl) denote the number of solutions of the
system ∑

u∈Jv

cuF(xu) = 0 (1 6 v 6 l),

with 1 6 x 6 N . Then it follows that there exists a partition {1, . . . , s} =
J1 ∪ . . . ∪Jl, of the aforementioned type, for which

N1(A )� N2(N ; J1, . . . ,Jl).

Write mv = card(Jv) (1 6 v 6 l), and note that

m1 + . . .+ml = s. (11.10)

Finally, let n denote the number of the sets Jv with 1 6 v 6 l satisfying the
property that card(Jv) = 1.

Our next step is to consider the contribution of the subset-sum equations
defined by sets Jv, distinguishing two cases. Suppose first that card(Jv) = 1
and Jv = {u}. Since we may suppose cu to be non-zero, it follows from Lemma
5.2 that the number of solutions of the system of equations cuF(xu) = 0, with
1 6 xu 6 N , is O(Nd−1).
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Suppose next that card(Jv) > 1. Abbreviating f(α;N ;F) to f(α), a trivial
estimate yields ∮

|f(α)|2 dα� N2d−1.

On the other hand, a trivial estimate in combination with Theorem 2.1 delivers
the bound ∮

|f(α)|s dα� N sd−K+ε.

Then it follows from Hölder’s inequality and a change of variable that∮
|f(cuα)|mv dα 6

(∮
|f(α)|s dα

)(mv−2)/(s−2)(∮
|f(α)|2 dα

)(s−mv)/(s−2)

� (N sd−K+ε)(mv−2)/(s−2)(N2d−1)(s−mv)/(s−2)

� Nmvd−mvK/(s−n)−νv+ε,

where

νv =

(
mv − 2

s− 2

)
K −

(
mv

s− n

)
K +

s−mv

s− 2
.

From here, a consideration of the underlying Diophantine system, followed
by an application of Hölder’s inequality, reveals that

N2(N ; J1, . . . ,Jl)� (Nd−1)n
∏

16v6l
card(Jv)>1

∮ ∏
u∈Jv

|f(cuα)| dα

� N (d−1)n
∏

16v6l
card(Jv)>1

∏
u∈Jv

(∮
|f(cuα)|mv dα

)1/mv

� N (d−1)n
∏

16v6l
card(Jv)>1

Nmvd−mvK/(s−n)−νv+ε.

We therefore deduce from (11.10) that

N1(A )� N sd−K−ν+ε,

where

ν = n+
∑

16v6l
card(Jv)>1

((
mv − 2

s− 2

)
K −

(
mv

s− n

)
K +

s−mv

s− 2

)
.

On recalling (11.10), we see that

ν = n+

(
(s− n)− 2(l − n)

s− 2

)
K −K +

s(l − n)− (s− n)

s− 2
.

A modicum of computation reveals that

(s− 2)ν = n(s− 2) + (2− 2l + n)K + s(l − n)− (s− n)

= (s− 2K)(l − 1) + n(K − 1).
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Our hypothesis on s ensures that s > 2rk + 1 > 2K + 1, and we may suppose
moreover that l > 2. We therefore deduce that ν > 1/(s− 2), and thus

N1(A )� N sd−K−1/s.

This completes the proof of our earlier claim, and hence the proof of Theorem
11.3 is now complete.
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